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ABSTRACT
Speech processing can be of great help for indexing and
archiving TV broadcast material.  Broadcasting station
standards will be soon digital.  There will be a huge increase
in the use of speech processing techniques for maintaining
the archives as well as accessing them.

This paper starts with a review of several techniques used for
classification of speech, music and noise. Generally,
approaches that use Neural Networks (NN) or Hidden
Markov Modelling (HMM) do not allow to “look inside” the
network or models to determine which aspect of the sounds
are similar to each other.  This makes it difficult for the
researcher to determine the features of the audio that are
important and which ones can be ignored [1].  Furthermore,
for archiving TV broadcast material, the segment time
accuracy does not need to be as precise as when labelling
speech corpora to be used for speech recognition research.
Here, it is more important to have the correct label than to
have the precise start and finish times of each segment.

We present an application of information theory to the
classification and automatic labelling of TV broadcast
material into speech, music and noise.  We use information
theory to construct a decision tree from several different TV
programs. This is known as the training data.  We then apply
this decision tree to a different set of TV programs, known as
test data. We present the classification results on the training
and test data sets.  The correct classification rate at the frame
level, for the training data was 95.5%, while for the test data
it ranged from 60.4% to 84.5%, depending on the TV
program type. At the segment level, the correct recognition
rate and accuracy on the train data were 100% and 95.1%,
respectively while for the test data the %correct ranged from
80% to 100% and %accuracy ranged from 64.7% to 100%.

1. INTRODUCTION

There is currently a huge growth of the number of hours
stored at different digital media archives all over the world.
A big part of these collections is made up of broadcast TV
material stored for future reference or retrieval. In order to
have efficient access to such collections, good indexing is
needed. The indexing cannot be made manually due to the

large number of audio processing hours; therefore the need
for automated indexing techniques.

There has been some previous work in this area. Some of this
work concentrated on discrimination between speech and
music. John Saunders [2] uses a discrimination technique
based on statistics of the energy contour and the zero-
crossing rate. Eric Scheirer and Malcolm Slaney use various
combinations of 13 features [3]. Other researchers
discrimination between speech, music, silence and other
sounds.  Pfeiffer et al  [4] use perceptual criteria by matching
characteristics such as amplitude, pitch and frequency.
Jonathan Foote uses a supervised tree-based vector quantizer
trained to maximize mutual information (MMI) [5], [6].

This paper concentrates on the indexing of music, speech,
silence and noise segments in an audio file. We are interested
in labelling any video program into segments of speech,
segments of music and segments of noise.  The timing
accuracy of the segments for such labelling is not of critical
importance.  We need more accuracy in “what” is in the track
then “when” it occurs.

This basic indexing will enable us to determine the
percentage of speech and music contained in each video track
and will allow efficient browsing of the video archive.  We
will be able, with systems such as ACSys Film Reserachers
Archival Navigation Kit [7] to view only the relevant
segments that contain only speech or only music.

The proposed system [8], [9] uses information theory to
construct a decision tree from several different TV programs.
During the training phase, the feature extraction framework
[10] extracts features from the continuous audio signal on a
frame by frame basis, and the C4.5 induction system [11],
[12] uses these features to train a decision tree.  The
classification is performed at the frame level, using an
inference engine to execute the decision tree and classify the
firing of the rules. The classified frames are then searched
using a simple Viterbi algorithm, with fixed cost penalty, to
identify the best path through the audio track.

The decision tree can serve two purposes.  It can be used to
classify a set of unlabelled attributes, and it can also provide
an insight into the reason for that decision or classification
[5]. The proposed approach provides also a simple method



for analysing the many acoustic-phonetic theories using real
audio data.

This paper is organised as follows. In section 2 we introduce
the training and classification strategy. In section 3 we
present the classification results, at the frame and segment
levels, on the train and test database. Performance evaluation
of the classifier is covered in section 4.  A summary of our
finding is presented in section 5 and section 6 concludes the
paper.

2. TRAINING AND CLASSIFICATION
STRATEGY

2.1 Database

The hand labelled training data consisted of one TV
broadcast audio file of about 3 minutes in duration (164 sec).
The test data consisted of three different TV broadcast files,
each of about 1 minute duration. Only one test file, B2 was
extracted from the same program as the training data, but it
did not form part of the training data..  Thus we have not
generated all the test files from a subset of the training.  This
makes the task of classification more difficult but also more
realistic from the point of view of real application. The test
files were also hand labelled to allow for direct comparison
with the labels generated during the recognition stage. The
composition of training and test data is shown in Table 1.

Name Train/Test Duration (s) Comments

B0 Train 164 Documentary A

B1 Test 42 Documentary B

B2 Test 46 Subset of Doc. A

B3 Test 32 Documentary C

Table 1. Composition of training and test data

The task chosen was to classify a subset of 4 broad classes
(Speech, Music, Silence, Other) by reducing the original 7
classes as shown in Table 2.

2.2  Feature Extraction

Seven  (7)  features   were    selected,  five (5)   time   domain

7 classes 4 classes

VoMale Speech

VoFemale Speech

MuInst Music

MuOther Music

MuPerc Music

Sil Silence

NoiseOther Other

Table 2. Training and testing subsets of the database

features  and  two (2) others.  The  audio signal was sampled
at 8 kHz and each  frame was 256 samples long and was
shifted forward by 128 samples (16 ms).  The samples were
normalized and then pre-emphasized using a first-order filter:

H(z) = 1 - 0.95 z-1

The samples were then multiplied by a Hamming window,
defined as:
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where N is the number of samples per frame.  For each audio
frame, the following time domain features were extracted:

1. Root Mean square (RMS). The logged sum of the
squared samples

2. Zero crossing rate (ZCR). The number of time-domain
zero-crossings per second.

3. Envelope. This is the maximum amplitude.
4. Difference in amplitude between maximum peak and

previous minimum peak within an audio frame
(Local_diff_p)

5. Difference in amplitude between maximum peak and
following minimum peak within an audio frame
(Local_diff_n)

The features Local_diff_p and Local_diff_n were extracted to
try and track the dynamics of the time domain signal and it is
illustrated in Figure 1. The other two features were extracted
from ESPS signal processing package and consisted of:

1. Fundamental frequency (F0) or pitch.

2. Voiced/Unvoiced.

Figure 1.  Method of extraction of Local_diff_p and Local_diff_n from the audio signal
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Figure 2. Block schematic of training and classification strategy

2.3 Training

A block schematic of the training and classification strategy is
shown in Figure 2. During the training phase, the feature
extraction framework extracted the features from the
continuous speech signal on a frame by frame basis.  The time
aligned labelled files were then used to associate each frame
with its corresponding label and generate a training data file.
The data file contained labelled examples in the form (X,a),
where X is the feature vector and a is the corresponding class.
The C4.5 program then used this file to generate a decision
tree.

2.4  Classification and Recognition

The classification was performed at the frame level and the
performance was evaluated by comparing each classified frame
against the reference frame derived from the labelled data. This
procedure allowed the correct identification of substitutions
and insertions per frame.

In HMM, at each audio frame a probability of observation and
transitional probability is generated. Using decision trees for
classification, we could only extract a probability of
observation in the form of confidence factor, for each class.
Since we had no transitional probability, we used a fixed cost
factor in the viterbi algorithm to find the best segmentation
path through the audio track. To reduce the number of
insertions and deletions, a minimum duration constraint was
imposed for each class using the average duration from the
training data.  The output of the Viterbi identified class
segment boundaries and generated a label file. This label file
was then time aligned, using dynamic programming against the
reference label file, to produce the final %correct and
%accuracy.

3. CLASSIFICATION RESULTS

The Classification technique was tested on real audio data
extracted from TV programs. Three different programs were

used and the training data was selected from only one of these
(B2). Table 3 shows frame level classification results for train
and test audio data. Tables 4 shows the classification results at
the segment level after alignment of the reference and test label
files, using dynamic programming. Table 5 shows the number
of insertions and deletions.

File Type % Error
B0 Train 4.5

B1 Test 15.5

B2 Test 26.9

B3 Test 39.6

Table 3. Frame level classification results

Table 4. Segment level recognition results

File %Corr. %Subs. %Del. %Ins. %Acc.
B0 100.0 0.0 0.0 4.9 95.1

B1 82.4 17.6 0.0 17.6 64.7

B2 100.0 0.0 0.0 0.0 100.0

B3 80.0 6.7 13.3 0.0 80.0
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Table 5. Segment level performance results

4. PERFORMANCE EVALUATION
The results presented in the  previous  section cannot be
directly compared with other published results in the open
literature, since as yet there is no standard audio database
available, similar to TIMIT, Wall Street Journal or
Switchboard database which are used by speech recognition
researchers.

Saunders [2] reports a 98% classification accuracy on
commercial radio broadcasts.  Scheirer and Slaney [3] report
1.4% error on a large and diverse collection of FM radio
broadcasts. In our experiments, the best segment level
classification was obtained on the test data (B2) that came
from the same audio track as the train data, but did not form
part of the train data. The other two test segments (B1, B3) that
came from completely different TV programs, the average
%correct and %accuracy were 81.2% and 72.4%, respectively.
B1 contained segments of applause, while B3 contained
cheering, Laughter and singing.

5. DISCUSSION

A decision tree generated from a relatively short (164 sec) of
train data extracted from a single TV source audio track. It was
sufficiently robust to be able to discriminate between speech,
music, silence and noise on test data that was extracted from
two different two programs, with an average duration of 44
sec. The classification performance can be further improved by
including examples from these two different sources in the
train data, specifically examples of applause, cheering and
singing.

We could also label the train data more correctly. For example,
there were segments in the train data that contained
background music on top of the speech signal but were
labelled as speech only.  Similarly there were segments that
contained clapping or laughter on top of the speech signal.
These were labelled as speech.  The feature set can also be
further optimized.  For example, the feature fundamental
frequency can be represented as “present” or “absent” instead
of its numerical value.

6. CONCLUSION

This paper demonstrated an application of information theory
to the classification and automatic labelling of TV broadcast
material into speech, music, silence and noise.  We used
information theory to construct a decision tree from several
different TV programs. The experimental results indicate the
ability of this approach to build reliable decision trees that can
be used to perform the classification task on unknown audio
tracks.  We have demonstrated that this approach works on
audio segments that are a subset of the train data and from very
different audio tracks that have different program
characteristics.

Unlike techniques such as HMM, this approach is
computationally inexpensive with very fast classification in
terms of computation cost.  Another interesting feature of using
decision trees is that the discriminating power of each feature
can be determined by examining the structure of the tree. If a
feature is never used for a split or used in only a few splits,
then it can safely be ignored.  This should help researchers to
determine features that are important for audio indexing.
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