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ABSTRACT

The work examines Karhunen-Loeve Transform and
Linear Discriminant Analysis as means for designing opti-
mized spectral bases for the projection of the critical-band
auditory-like spectrum.

1. INTRODUCTION

1.1. The state-of-art

Typical large vocabulary automatic recognition of
speech (ASR) consists of three main components: feature
extraction, pattern classi�cation, and language modeling.
The feature extraction attempts to reduce the information
rate of raw speech data by alleviating irrelevant variabil-
ity such as speaker characteristics or environmental noise,
the pattern classi�cation further reduces information rate
by classifying each time instant into one of (phoneme-like)
subword-unit classes, and language modeling compensates
for possible errors of classi�cation by emphasizing more
likely word combinations.

Over the past two decades we witnessed the introduc-
tion of stochastic approaches in both the pattern classi-
�cation and the language modeling modules. Stochastic
techniques typically use only minimal a priori assumptions
about the nature of the problem and derive their structure
mostly directly from the data. Replacing the hardwired
prior knowledge by the knowledge derived from the data
turned out to be one of most signi�cant advances in ASR
research.

1.2. Motivation for the current work

Data-driven approaches are still largely absent in the
analysis module. Only recently, some emerging e�orts in
deriving temporal RASTA processing in analysis from the
data [2, 11, 5] started to appear. The current work at-
tempts to extend such data-driven techniques into opti-
mization of spectral bases in speech analysis.

The analysis module in ASR typically consists of a
series of processing steps, some of which are inher-
ited from speech coding, and some justi�ed by percep-
tual or pattern matching arguments. A currently domi-
nant speech representation is the auditory-like cepstrum
[10, 4]. This cepstrum represents an appropriately modi-
�ed (through auditory-like frequency and amplitude warp-
ing and critical-band smoothing) short-term spectrum of
speech, projected onto the cosine basis (see Fig. 1). The
short-term spectrum is derived from about 20 ms long
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Figure 1: Generic form of dominant speech representa-
tion in ASR. The short-term speech spectrum is modi�ed
by auditory-motivated processing. This may include warp-
ing along its frequency axis by log(const+ x)-like nonlin-
earity and smoothing. Modi�cations along the amplitude
axis may include some form of emphasis of higher fre-
quencies (6dB/oct preemphasis, simulated equal loudness
curve,..) and logarithmic warping. The modi�ed spectrum
is then projected on cosine basis.

consecutive segments of the speech signal. The spectral
modi�cations are justi�ed by properties of human hear-
ing [4], and the cosine projection by the need for partial
decorrelation of features [9] used in the subsequent pattern
classi�cation.

This work investigates the suitability of the cepstral rep-
resentation and attempts to derive an alternative bases
for projection of the auditory-like critical-band spectrum.
The technique we use is based on analyzing the variance
of about 2 hours from the OGI Stories database 1. Stop-
consonants were excluded from the basis derivation re-
ported in this paper. However, all classes were evaluated
in the phoneme classi�cation experiment reported in the
Section 3.

1This portion of OGI Stories database consists of phoneme
hand-labeled 
uent telephone-quality speech from 208 adults
of both genders, each asked to speak on an arbitrary topic for
about one minute.



2. DATA-DRIVEN SPEECH

ANALYSIS

2.1. Linear discrimination analysis

In the past few years we have been experimenting with
ways of utilizing large amounts of speech data for improv-
ing the speech feature extraction module. The main tool
we use is the linear discrimination analysis (LDA) tech-
nique. LDA is a well known technique which attempts
to �nd a linear transformation of the feature space which
would optimize linear separability of classes. Typically,
only a few eigenvectors of the transformation matrix are
of interest 2.

LDA is not new to speech processing. To our knowledge,
its use has been �rst studied by Hunt [6] who later used it
for discriminative dimensionality reduction [7]. Brown [3]
was �rst to apply LDA to several concatenated feature vec-
tors, thus addressing both temporal and spectral dimen-
sions. Earlier, we have used LDA for deriving temporal
RASTA �lters for processing time trajectories of critical-
band spectral energies [2, 11, 5]. In our present work we
use LDA to derive spectral weighting functions (spectral
basis) as an alternative to the cosine basis in the conven-
tional Mel cepstral analysis.

2.2. Spectral basis from KLT

In the past we have used data-driven techniques for de-
signing temporal RASTA �lters for enhancement of noisy
speech [1] and for robust ASR [2, 11]. In the current work
we attempt to derive optimized spectral bases functions
for ASR.

The projection onto a cosine basis approximately decor-
relates the spectral vector space [9]. This is illustrated in
Fig. 2. The proper way to decorrelate the vector space
is through the data-dependent Karhunen-Loeve transform
(KLT). This is illustrated in Fig. 3 which shows the �rst six
eigenvectors of the covariance matrix of the 14-dimensional
critical-band spectral space (the �rst six elements of the
KLT basis) derived from the 2 hours of OGI Stories
database (stops excluded).

The basis vectors are reminiscent of cosine functions of
the Mel cepstral analysis with the �rst vector evaluating
the spectral energy and the consecutive higher ones are
sensitive to cosine spectral ripples with decreasing period.
The KL transformed covariance matrix is of course diago-
nal.

2.3. Spectral basis from LDA

The KL transform projects on the directions of max-
imum variability. As known, there are many sources of
variability in speech, many of them harmful for phonetic
classi�cation [5]. It may be better to project the space on
the direction of maximum separability rather than on the
direction of maximum variance.

The transform which projects on the directions of max-
imum separability is the LDA. The basis derived by the
LDA transform may be di�erent from the basis derived by

2The matrix is of rank (N-1) where N is a number of classes
in the classi�cation problem.
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Figure 2: Upper left: Diagonal of the total covariance
matrix projected on the cosine basis. Upper center: Co-
variance matrix of the original critical-band auditory spec-
tral space derived from about 2 hours of hand-segmented
OGI Stories database. As seen, the spectral covariance
matrix is far from diagonal. Upper right: The total spec-
tral covariance matrix, projected on the �rst 8 vectors of
the cosine basis, is partially diagonalized. The �gure also
shows below the correlation matrixes the �rst 6 cosine basis
functions (the zeroth base function, i.e. constant evaluat-
ing the energy of the spectrum is excluded) used in the
ceptral projection.
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Figure 3: Upper left: Eigenvalues of the KLT basis. Up-
per center:The total spectral covariance matrix projected
on the �rst 8 basis vectors of the KLT basis. Upper left:
Eigenvalues of the �rst 8 KLT vectors. The �rst 6 KL
spectral basis functions derived by PCA analysis of the
critical-band spectral space are also shown.
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Figure 4: Within-class and between-class covariance
matrixes for the critical-band spectrum of phonetically-
labeled OGI Stories database.
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Figure 5: Upper left: Eigenvalues of the LDA-derived
basis. Upper center: The total critical-band spectral cor-
relation matrix, projected on the �rst 8 basis vectors of the
LDA-derived basis. Upper left: Eigenvalues of the �rst 8
LDA-derived eigenvectors. The �rst 7 LDA-derived spec-
tral basis functions of the critical-band spectral space are
also shown.

the KL transform.

Computing the LDA projection involves computing
principal components of the so called Fisher covariance
matrix [8]

Swb = S
�1

w Sb (1)

where Sw refers to the matrix of the mean of the within-
class variances and Sb the matrix of the variance of the
means of the classes (Fig. 4). The Sw computed directly
from the original data is not well conditioned and this may
lead to di�culties in computing the Swb. In this work we
alleviated this problem by �rst smoothing the critical-band
energy space using truncated KLT which preserved 95% of
the original variance in the data.

The result is illustrated in Fig. 5 which shows �rst six
eigenvectors (linear discriminants) of the KLT-smoothed
(95% of variance) Fisher discriminant matrix [8] of the
stops-excluded OGI stories critical-band spectral space.

Unlike the KLT transform, the total energy of the spec-
trum is no longer emphasized. The �rst discriminant ap-
pears to evaluate spectral energy in the �rst formant region
and could be primarily discriminating between sonorant
and non-sonorant sounds. The second and third discrim-
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Figure 6: Upper left:Eigenvalues of the LDA-derived ba-
sis. Upper center: The total short-term spectrum (FFT-
derived) correlation matrix, projected on the �rst 8 basis
vectors of the LDA-derived basis. The �rst 6 LDA-derived
spectral basis functions derived by LDA analysis of the
short-term power-spectrum FFT space and displayed with
the Bark-warped spectral axis are also shown.

inants are focusing on spectral ripples [12] in the central
part of the critical-band spectrum, the second one being
more sensitive to larger ripples than the third one. The
4th one evaluates spectral slope above 3 Bark and the 5th
one is sensitive to about 5 Bark spectral ripple through
the whole available spectrum. Higher discriminants with
rather small eigenvalues are perhaps of lesser importance.
Just as in the KLT case, the LDA transformed covariance
matrix is also diagonal.

2.4. Optimality of Bark scale?

It appears that zero-crossings of the LDA-derived spec-
tral basis are reasonably uniformly spaced on the Bark
scale of the auditory-like critical-band spectrum. Thus, it
appears that the Bark frequency scale allows for use of a
simple bases in phoneme classi�cation. This would sup-
port optimality of the Bark (or Mel) scale for phoneme
discrimination observed earlier [13].

To test this observation further we have also obtained
LDA-derived spectral basis directly from the unsmoothed
129-point FFT power spectrum. The zero-crossings of the
signi�cant linear discriminants are typically more dense
at lower frequencies. When displayed on the Bark fre-
quency scale (see Fig. 6), the spectral bases resemble the
bases from the critical-band analysis shown in Fig. 5. The
most noticeable di�erence is reduced emphasis on higher
frequencies.

3. PHONEME CLASSIFICATION

EXPERIMENTS

To asses the e�ectiveness of the data-derived spectral
bases we ran a phoneme-classi�cation experiment. The
task was to classify all frames of the test set which con-
sisted of 29 phonemes present in the hand-labeled OGI
Numbers database. MLP-based classi�er achieves about



45% error on this task.

The classi�cation was based on a single spectral frame.
Logarithmic spectral means were subtracted from each �le
to partially compensate for communication channel di�er-
ences. Speech from about 800 �les was used in the train-
ing of a simple single-density, diagonal-covariance Gaus-
sian classi�er. Each �le contains an utterance of natu-
ral number (zip codes, telephone numbers,..) by a single
speaker. Some speakers utter more than one utterance.
50000 spectral frames from around 300 �les were used in
the test. That makes di�erences of about 0.5% signi�cant
at the 95% level according to a binomial test.

Three di�erent spectral bases were evaluated:

1. MEL cosine spectral basis (8 Mel cepstrum coe�-
cients, zeroth excluded).

2. KLT-derived spectral basis (�rst 8 coe�cients).

3. LDA-derived spectral basis (�rst 8 coe�cients).

Results of this experiment are shown in Table.1.

Matrix COS PCA LDA

FULL 53.7% 53.4% 53.4%
DIAG 57.3% 57.6% 56.6%

Table 1: Phoneme classi�cation error on the OGI Stories
corpus - full training

The full covariance classi�er results are practically iden-
tical (they should be identical if there was no truncation of
higher basis functions since such classi�er is invariant un-
der linear projections). For the diagonal covariance case,
which is probably of most interest for HMM classi�cation,
the LDA-derived basis appears to be better than both the
cepstrum and the KLT-derived basis. However, the di�er-
ence (although signi�cant according to the binomial test)
is not large.

4. DISCUSSION AND

CONCLUSIONS

We have shown that optimal spectral basis for project-
ing onto the direction of the maximum variability (KLT-
derived) are di�erent from the optimal spectral basis for
projecting onto the direction of maximum phoneme sepa-
rability (LDA-derived). The KLT-derived basis are similar
to the conventional cosine basis used in cepstral analysis,
the LDA-derived basis di�er. Periodicity of the optimized
spectral bases in Bark domain supports usefulness of Bark-
like spectral warping in phoneme classi�cation.

The alternative spectral bases so far do not seem to o�er
signi�cant advantage in phoneme classi�cation of spectral
vectors. One would hope that there is more to gain from
optimized projections of the spectral vector space. This
result may suggest limited utility of single-frame spectral
representations in classi�cation of phonemes from 
uent
speech. Further experiments are pending to substantiate
this conclusion.
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