
AUTOMATIC IDENTIFICATION OF COMMAND BOUNDARIES
IN A CONVERSATIONAL NATURAL LANGUAGE USER INTERFACE

Ganesh N. Ramaswamy Jan Kleindienst

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

ABSTRACT

In this paper, we propose a trainable system that can automati-
cally identify the command boundaries in a conversational nat-
ural language user interface. The proposed solution makes the
conversational interface much more user friendly, and allows
the user to speak naturally and continously in a hands-free man-
ner. The main ingredient of the system is the maximum entropy
identification model, which is trained using data that has all the
correct command boundaries marked. During training, a set of
features and their weights are selected iteratively using the train-
ing data. The features consists of words and phrases, as well
as their relative position to the potential command boundaries.
Decoding is done by examining the product of the weights for
the features that are present. We also propose several enhance-
ments to the approach, such as combining it with a more effective
language model at the speech recognition stage to generate addi-
tional tokens for the identification model. We conducted several
experiments to evaluate the proposed approach, and the results
are described.

1. INTRODUCTION

State-of-the-art conversational natural language user interface
systems typically require the user to indicate the end of a com-
mand, or the command boundary, through some form of manual
input, such as pausing between commands or clicking a micro-
phone control button on the display. Such a requirement makes
the user interface quite cumbersome to use.

There appears to be no published prior work that attempts
to solve the problem of automatically identifying the command
boundary in a conversational natural language user interface.
The only related published prior work is that of determining if a
punctuation mark in raw text corresponds to a sentence boundary
[4], [7]. In a conversational system, the user usually does not
dictate punctuation marks, and hence these solutions are not
particularly useful.

In this paper, we propose a trainable system that can auto-
matically identify the command boundaries in a conversational
natural language user interface, employing statistical techniques
commonly used in speech recognition and natural language un-
derstanding. The main ingredient of the system is the maximum
entropy identification model. The training data is first marked
with the command boundaries. For each command boundary, all
the surrounding words within a window (including words which
are both to the left and to the right of the boundary) are marked
to indicate their relative position with respect to the boundary.
The training data which is thus processed is then subjected to

maximum entropy style feature extraction, with the features con-
sisting of words and phrases, as well as their relative position
to the boundary. The corresponding weights for the features are
estimated using an iterative algorithm. During decoding, the test
sentences are processed similarly to mark the relative position
of each of the words in the current string, with respect to a hy-
pothesized location of the command boundary. When possible,
words occurring after the hypothesized location of the boundary
are also marked. Then the decision of whether or not to declare
the hypothesized location as a command boundary is made by
examining the product of the weights for the features that are
present.

We also propose several ways to strengthen the maximum
entropy identification model. One such enhancement is using a
more effective language model at the speech recognition stage.
All the command boundaries in the language model training data
are marked with a new token, and an additional set of baseforms
for the boundary (most of them corresponding to various forms
of silence) are included in the model. With this addition, the
speech recognition engine produces a string of text with addi-
tional tokens to suggest potential command boundaries. Other
enhancements to the identification model, such as taking advan-
tage of extended periods of silence, are also discussed.

Besides identifying the command boundary, the proposed
solution can also be used to recognize multiple commands in
the same sentence. This will alleviate the need to construct and
support compound commands, since now sentences containing
multiple commands can be automatically decomposed using the
same command boundary identification scheme.

The remainder of this paper is divided into 3 sections. In
Section 2, we describe the proposed solution in greater detail,
along with some enhancementsand other implementation related
issues. The results of the experiments conducted to evaluate the
performance of the proposed solution are described in Section 3,
and Section 4 concludes the paper.

2. IDENTIFICATION OF COMMAND BOUNDARIES

In this section, we describe in detail the proposed solution for
identifying the command boundaries in a conversational system.
First, we need to distinguish utterances that correspond to com-
plete commands, from those that do not. For example, consider
the problem of building a conversational natural language inter-
face for an email application. For this domain, utterances such as
“check new mail” and “show me the first message” are complete
commands, but utterances such as “check” , “check new” , and
“check new mail show” are not complete commands.



The identification problem can be stated quite simply as
follows: given a source utterance S consisting of one more more
words, we need to determine the output T in the target space ,
such that T = 1 when the utterance S is a complete command,
and T = 0 otherwise. In other words, we need to evaluate the
conditional probability P (T jS) for both of the values T in the
target space, and select as the output that T which maximizes
P (T jS).

Our objective here is to build a model from training data that
can generate the values P (T jS). The solution we propose to
generate the valuesP (T jS) uses the maximum entropy principle.
The maximum entropy approach has been used successfully in
many natural language processing problems [1], [2], [5], [6].

In order to construct a maximum entropy model, we first
need to collect a large number of training utterances relevant
to the domain, corresponding to complete commands. From
these utterances, we can then generate a set of utterances that do
not correspond to complete commands. For every entry in this
augmented set, we also indicate the desired output (T = 0 or
T = 1). For the example discussed earlier in this section, where
the utterance “check new mail” was followed by “show me the
first message”, the following entries are made in the training set:

check // T = 0

check new // T = 0

check new mail // T = 1

check new mail show // T = 0

check new mail show me // T = 0

In the last two entries, we have added words from the subsequent
utterance. Such entries are sometimes necessary to resolve cer-
tain ambiguities that may arise. For example, utterances such
as “delete”, “delete this” and “delete this one” are all complete
commands. In these cases, although “delete” by itself may be
a complete command, it is not so when followed by “this”, and
similarly, “delete this” is not a complete command when fol-
lowed by “one”. In some other cases, the entire meaning of
the utterance may change if the command boundary is placed
prematurely. For example, if the input utterance is “delete the
second message”, then terminating the command after “delete”
would result in an incorrect command being executed. Hence the
above mentioned look ahead step is necessary, and the number
of words to look ahead is one of the parameters of the algorithm
that needs to be chosen carefully. In the experiments that we
describe in Section 3, we use a look ahead window size of two
words.

It is obvious that the presence of a word or a phrase is not
sufficient to make the decision, and we also need the relative
position of the word or the phrase with respect to a hypothesized
location of the command boundary. If we augment each word in
the training set with �n if the word is n positions to the left of
the hypothesized command boundary, and with +n if the word is
n positions to the right of the hypothesized command boundary,
then the entries in the processed training set will look like:

check-1 // T = 0

check-2 new-1 // T = 0

check-3 new-2 mail-1 // T = 1

check-4 new-3 mail-2 show-1 // T = 0

check-5 new-4 mail-3 show-2 me-1 // T = 0

check-3 new-2 mail-1 show+1 // T = 1

check-3 new-2 mail-1 show+1 me+2 // T = 1

check-4 new-3 mail-2 show-1 me+1 // T = 0

In the above example, we have added additional entries to ac-
commodate the look ahead process.

In order to build a maximum entropy model, we first have to
select a set of features. We use features of the form

ft;s(T; S) =

�
1 if t = T; s 2 S

0 otherwise

Although we have restricted ourselves to using only binary val-
ued feature functions, the method we describe is applicable for
all real-valued feature functions. The features contain one or
more words from the preprocessed training set (with the relative
positions augmented), along with the target output. For example,
consider the feature

f(T = 1), (new-2 mail-1)

This feature fires if the utterance S contains the word new and
mail at first and seconds positions, respectively, to the left of
the hypothesized command boundary, and if the target output is
T = 1.

With a slight abuse of notation, we shall denote the features
by fi, where i = 1; : : : ; n. The total number of features, n, is
an important parameter of the algorithm, which we will revisit
in Section 3. Each feature consists of one or more augmented
words, including long-distance relationships, along with the cor-
responding output in the target space. For selecting the features,
we first construct a large pool of candidate features using the
data from the processed training set, and the features can then be
selected from this pool using the iterative procedure specified in
[5].

Having selected a set of n features, the maximum entropy
model for the joint distribution of P (T; S) is of the form

P (T; S) = �

nY
i=1

�
fi(S;T )

i

See [6] for the derivation. The�i’s are the weights corresponding
to the feature fi, and � is a normalization constant. The weights
�i are chosen to maximize the likelihood of the training data, and
we use the Improved Iterative Scaling algorithm [2] to calculate
these weights. From a maximum entropy point of view, we can
see that the model tends not to commit towards a particular output
(T = 0 or T = 1) unless it has seen sufficient evidence for that
outcome in the training data; it is maximally uncertain beyond
meeting the evidence.

The decision rule to classify each hypothesized command
boundary is straightforward. Given an utterance S, a hypoth-
esized command boundary is classified as an actual command
boundary if and only if P (T = 1jS) > 1

2
, where

P (T = 1jS) =
P (T = 1; S)

P (T = 1; S) + P (T = 0; S)

Alternatively, we decide in favor of the command boundary if
and only if P (T = 1jS) > P (T = 0jS).

2.1. Enhancements to the Algorithm

There are several enhancements to the algorithm that can improve
the accuracy of the classification. For example, we can introduce
a new token to indicate the beginning of the utterance. Using the
token “SB” to indicate the beginning of the utterance, the entries
in the processed training set may look like:



SB-4 check-3 new-2 mail-1 // T = 1

SB-5 check-4 new-3 mail-2 show-1 // T = 0

SB-4 check-3 new-2 mail-1 show+1 me+2 //T = 1

SB-5 check-4 new-3 mail-2 show-1 me+1 // T = 0

Marking the beginning of each utterance in the training set is
straightforward. During classification, the sentence beginning
token is inserted before the first utterance, and for subsequentut-
terances, it is inserted after every declared command boundary.
Although this procedure may occasionally cause classification
errors to propagate to subsequent utterances, overall it improves
accuracy significantly, since it adds valuable information regard-
ing the length of the utterance.

Another important enhancementinvolves using the language
model (at the speech recognition stage) to produce additional
tokens that can further strengthen the maximum entropy model.
Specifically, we introduce a new token “SE”, corresponding to
the command boundary which is inserted at the end of each
sentence in the language model training data, and the language
model is built using this data. Acoustic baseforms for this token,
corresponding to various forms of silences, are added to the
model. With this enhancement, the speech recognition stage,
which precedes the command boundary identification stage, will
produce utterances such as “check new mail SE show me the
first message SE ...”. All of the training data for the maximum
entropy model construction should be first subjected to speech
recognition using this enhanced language model, and now the
entries in the processed training set may look like:

SB-5 check-4 new-3 mail-2 SE-1 // T = 1

SB-6 check-5 new-4 mail-3 SE-2 show-1 // T = 0

SB-5 check-4 new-3 mail-2 SE-1 show+1 me+2
// T = 1

SB-6 check-5 new-4 mail-3 show-2 SE-1 me+1
// T = 0

Although errors may be made by the speech recognition stage
(the SE tokens may be missing or misplaced), this enhancement
also provides a significant amount of additional information that
can be used by the command boundary identification stage.

In practice, we can also take advantage of any extended pe-
riod of silence present in the utterances. Suppose the utterance
in question is significantly different from those seen in training.
Then the maximum entropy identification stage may not decide in
favor of the command boundary, if there is insufficient evidence
for that outcome in the training data. In this case, if the utterance
is followed by an extended period of silence, then we can force a
command boundary. This enhancement is also useful to reset the
system if the errors in classification starts propagating to subse-
quent commands. The minimum duration of the silence period,
after which the boundary is forced, is a system parameter that
depends on each individual user, and should be made adjustable
by the user via the interface to the system.

3. PERFORMANCE EVALUATION

In this section we describe some of the experiments that were
done to evaluate the proposed approach. The experiments were
done within the context of a task involving a spoken natural
language user interface to an email application, which is the
same domain that we used in Section 2 to draw examples from.

We collected approximately 3000 sentences from this do-
main, each corresponding to a complete command. From these

Table 1: Experiment 1. The table below shows the error rates
for several command boundary identification experiments, with
varying number of features in the maximum entropy model. The
test set consisted of approximately 1900 utterances (independent
of the training set), of which about17% utterances were complete
commands. The error rates for the complete commands are
shown in the “Miss” column, and the error rates for the remaining
utterances are shown in the “False Alarm” column. The last
column shows the overall error rates, which is the weighted
average of the two individual error rates.

Features Miss False Alarm Overall
100 3.66% 32.91% 28.00 %
150 4.15% 26.47% 23.14 %
200 4.63% 24.02% 20.77 %
250 5.61% 20.63% 18.11 %
300 6.83% 18.61% 16.64 %
350 7.32% 17.53% 15.82 %
400 8.29% 17.14% 15.66 %

Table 2: Experiment 2. The table below shows the error rates
for the experiments where we introduced the “SB” token in the
training utterances to indicate the beginning of each utterance.

Features Miss False Alarm Overall
100 8.78% 5.34% 5.94 %
150 6.10% 5.03% 5.22 %
200 5.85% 5.09% 5.22 %
250 5.37% 5.09% 5.13 %
300 6.34% 5.50% 5.64 %
350 6.59% 5.29% 5.52 %
400 6.83% 4.98% 5.30 %

Table 3: Experiment 3. The table below shows the error rates
for the experiments where used the enhanced language model of
Section 2.1, in addition to the “SB” tokens introduced in Table 2.
The row labeled “LM only” is for the experiment where we used
just the language model for predicting the command boundaries
(the test was done only on complete commands). The remaining
rows are for the cases where we used both the enhanced language
model and the maximum entropy model for the identification.

Features Miss False Alarm Overall
LM only 23.9 % 6.5% -
100 3.72% 4.22% 4.13 %
150 3.72% 4.09% 4.03 %
200 4.02% 2.40% 2.67 %
250 4.64% 2.27% 2.67 %
300 5.57% 2.01% 2.62 %
350 5.57% 2.01% 2.62 %
400 5.57% 2.14% 2.72 %



sentences, we constructed additional utterances (about 12000)
which do not correspond to complete commands, similar to those
discussed in Section 2. These 15000 utterances were processed
to indicate the relative positions of the words with respect to
a hypothesized command boundary, and the processed training
data was used to construct the maximum entropy classification
model.

Similarly, for the purpose of testing, we collected another
set of about 320 sentencescorresponding to complete commands
and generated additional utterances that do not correspond to
complete commands. In the final test set, which consisted of
about 1900 utterances, approximately 17% of the utterances were
for complete commands.

Table 1 shows the results of the first experiment. In this
experiment, we did not use any of the enhancements proposed
in Section 2.1. We constructed several different classification
models with varying number of features, and the overall results
improved with increased number of features. The column labeled
“Miss” contains the error rates for the portion of the test data cor-
responding to complete commands, where the identification al-
gorithm “missed” to recognize the utterances as being complete
commands. Similarly the column labeled “False Alarm” con-
tains the error rates for the portion of the test data corresponding
to utterances that are not complete commands, where the iden-
tification algorithm incorrectly declared a command boundary.
The overall error rates are the weighted averages of the two error
rates.

Table 2 shows the results of the second experiment, where
we introduced the “SB” token to indicate the beginning of the ut-
terance, as we discussed in Section 2.3. The error rates dropped
significantly compared to Table 1, suggesting that the statistics
corresponding to the utterance length is very important in deter-
mining the sentence boundary. Also note that the best overall
performance was obtained with 250 features, and the perfor-
mance starts to deteriorate after that.

The language model containing the “SE” tokens,correspond-
ing to the command boundaries as predicted by the language
model, was introduced in the third experiment and the results
are shown in Table 3. The language model constructed was a
simple trigram language model, with bigram and unigram mod-
els mixed in for smoothing, as prescribed in [3]. The first row
contains the error rates for the experiment where we used just
the language model to perform the identification, without the
maximum entropy classification stage. The utterances from the
test set corresponding to complete commands were subjected
our speech recognition engine, and we found that the anticipated
“SE” tokens at the end of the utterances were missing in 23.9%
of the utterances, and 6.5% of the utterances contained incorrect
“SE” tokens. When we introduced the maximum entropy classi-
fication model, trained on data that included the “SE” tokens, into
the system, the error rates dropped significantly to 2.62%, with
300 features. Such a low error rate clearly makes the proposed
solution an excellent practical choice for identifying command
boundaries in a conversational natural language user interface.

Tables 1-3 show the performance of the off-line testing. We
also implemented the solution in a real-time system, along with
the enhancement due to extended silence periods discussed in
Section 2.1. The performance was comparable to that of Table
3, and since the command boundary identification is a relatively
light-weight component compared to the speech recognition and
natural languageprocessingcomponents, there was no noticeable

degradation in the speed of execution of the commands.
As noted in the introduction, the command boundary identifi-

cation scheme can also be used to recognize multiple commands
present in the same sentence. For example, if the user were to say
“forward this message to John and delete it,”, the two commands
can be decomposed automatically using the proposed approach
for command boundary identification, as long as we have also
included additional data in the training set corresponding to such
compound commands.

4. CONCLUSIONS

We have described a new approach to automatically identify the
command boundaries in a conversational natural language user
interface. The proposed solution makes the conversational inter-
face much more user friendly, and the user can speak naturally
and continously in a hands-free manner. The experimental re-
sults show that the proposed solution can identify the command
boundaries with a high degree of accuracy, and since it does not
require any heavy-duty computation during identification, it is
very suitable for practical implementation.

ACKNOWLEDGMENTS

The authors are grateful to Ponani S. Gopalakrishnan for posing
the command boundary identification problem, and to Kishore
Papineni for the introduction to maximum entropy based tech-
niques.

REFERENCES

[1] Berger, A., Della Pietra, S., and Della Pietra, V., “ A Max-
imum Entropy Approach to Natural Language Processing,”
Computational Linguistics, Vol. 22, No. 1, pp. 39-71, March
1996.

[2] Della Pietra, S., Della Pietra, V., and Lafferty, J., “Induc-
ing Features of Random Fields,” Technical Report CMU-
CS95-144, School of Computer Science, Carnegie Mellon
University, 1995.

[3] Jelinek, F., Statistical Methods for Speech Recognition, The
MIT Press, 1997.

[4] Palmer, D. D., and Hearst, M. A., “Adaptive Multilingual
Sentence Boundary Disambiguation,” Computational Lin-
guistics, Vol. 23, No. 2, pp. 241-267, June 1997.

[5] Papineni, K., Roukos, S., and Ward, T., “Feature-Based Lan-
guage Understanding,” EUROSPEECH, Rhodes, Greece,
1997.

[6] Ratnaparkhi, A., “A Simple Introduction to Maximum En-
tropy Models for Natural Language Processing,” Institute
for Research in Cognitive Science, Report 97-08, University
of Pennsylvania, May 1997.

[7] Reynar, J. C., and Ratnaparkhi, A., “A Maximum Entropy
Approach to Identifying Sentence Boundaries,” Fifth Con-
ference on Applied Natural Language Processing, Washing-
ton, D. C., pp. 16-19, April 1997.


