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ABSTRACT

Classical speaker and language recognition techniques can
be applied to the classification of unknown utterances by
computing the likelihoods of the utterances given a set of
well trained target models. This paper addresses the prob-
lem of grouping unknown utterances when no information is
available regarding the speaker or language classes or even
the total number of classes. Approaches to blind message
clustering are presented based on conventional hierarchi-
cal clustering techniques and an integrated cluster gener-
ation and selection method called the d* algorithm. Re-
sults are presented using message sets derived from the
Switchboard and Callfriend corpora. Potential applications
include automatic indexing of recorded speech corpora by
speaker/language tags and automatic or semiautomatic se-
lection of speaker specific speech utterances for speaker
recognition adaptation.

1 INTRODUCTION

This paper addresses the general task of automatic group-
ing of unlabeled speech messages based on either the iden-
tity of the speaker of the message or the language spoken.
In the conventional speaker or language recognition tasks,
models for specific speakers or languages are trained using
data from a labeled corpus and the likelihoods of unknown
test utterances are computed from the models. The class
of the unknown utterance is selected based on a compar-
ison of the likelihood scores. In this paper we generalize
the task to the case where no knowledge of the composi-
tion of the set of utterances, in terms of either the attribute
classes (speaker identities or languages) or even the num-
ber of classes, is available. The goal of the system is to
automatically partition the unlabeled speech messages into
clusters based on a common attribute class. Ideally, each
cluster would comprise all messages spoken by a specific
speaker (for the speaker clustering task) or all messages spo-
ken in a specific language (for the language clustering case).
Applications of blind message clustering include automatic
indexing of recorded speech corpora by speaker/language
tags and automatic or semiautomatic selection of speaker-
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specific speech utterances for speaker recognition adapta-
tion.

2 SYSTEM OVERVIEW

The block diagram in Figure 1 shows the major compo-
nents of the blind message clustering system. The task of
the system can be formally described as follows: Given a
collection of N speech messages mi, ms, ..., my from Ny at-
tribute classes (that is, Vs speakers or N; languages), pro-
duce a partitioning of the messages into a set of N, clusters
c1,C2,...cn,. ldeally, N. = N with each cluster contain-
ing all the messages associated with one and only one at-
tribute class. The system first produces an inter-message
distance matrix based on the attribute of interest (speaker
or language in this paper). A set of candidate clusters is
generated from the distances, and a final partition of the
input messages is obtained by searching through the candi-
dates and selecting the set that maximizes an appropriate
evaluation metric. We now describe each of the system

components in greater detail.
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Figure 1: Block diagram of blind clustering tasks.

2.1 Distance computation

Techniques such as Gaussian mixture modeling for speaker
recognition and interpolated language modeling of phone
sequences for language identification have yielded state-of-
the-art performance in supervised recognition tasks and so
formed the basis of the inter-message distance computation.
The goal of this system component is to generate inter-
message distances (or more properly, dissimilarities) which
are small when the messages are of the same attribute class
and large otherwise.

2.1.1 Speaker attribute

The distance computation for the speaker attribute is based
on the adapted GMM speaker recognition method described
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in [1]. For blind clustering, adapted GMMs are obtained
from the cepstral representations of all messages and like-
lihoods I(m;|A;) are computed for all (m;, ;) pairs, where
m; is message ¢ and A; is the GMM formed from message
j. An inter-message distance matrix is formed using the
symmetric Cross Likelihood Ratio d;; where

[(mi|Ap) I(m;|Ap)
I(mi|X;) I(m;]Ai)

di; =log + log (1)
and Ap is the Universal Background Model [1]. The Cross
Likelihood Ratio distance measure has the property that
di; = dj;; however, d(i,7) # 0 and there is no guarantee
that the triangular inequality is obeyed.

2.1.2 Language attribute

The distance computation for the language attribute uses
the Phone Recognition followed by Language Modeling tech-
nique of language recognition described in [2]. Language
models are obtained from phone sequence representations of
all messages and duration-normalized likelihoods I(m;|A;)
are computed for all (m;,A;) pairs, where m; is message
¢ and JA; is the interpolated language model formed from
message j. Inter-message distances are computed using the
symmetric Cross Entropy distance d;; where

[(milX) 1(m|A))
d;; = log + lo 2
7 =18 Uil xg) 8 Toms 2 )
For the Cross Entropy distance measure, d;; = dj; and

d(i,7) = 0; however, the triangle inequality is not obeyed.

2.2 Cluster generation and selection

The inter-message distance matrix is the input to the clus-
ter generation and selection module where the messages are
clustered subject to an evaluation measure which scores
the “goodness” of a partition. In this work we use the
BBN metric [3] which is designed to give better scores to
partitions having large, pure clusters than to ones having
smaller, impure clusters. The BBN metric is given by

N
IgsN Zznipi_QNc (3)
i=1
where n; is the number of messages in candidate cluster
i, N. is the number of candidate clusters in the selected
partition, and p; is the purity of cluster ¢. Purity is defined
as p; = Z;VZSI(T;:’ )2, where Ny is the number of attribute
classes (number of speakers or languages) and n;; is the
number of messages of attribute class j in cluster i.

The variable @ is a system design parameter that con-
trols the degree to which fewer, larger clusters are favored
at the expense of decreased purity. With small values of @,
greater weight is assigned to cluster purity and messages
of the same class will tend to be dispersed among several
clusters. For higher values of @, greater weight is attached
to limiting the total number of clusters; however, each clus-
ter is more likely to contain messages of different attribute
classes. Throughout this paper the value of @ will be set to
0.5. Two approaches to the problem of cluster generation
and selection will be presented in Section 3.

2.3 Evaluation

The BBN metric is useful for comparing systems on a spe-
cific data set. To compare performance across data sets we
define the clustering efficiency as a normalized BBN metric
given by

looy@-F
where Ippn(C) is the BBN metric value for partition C,
F is the BBN metric value for the full (one message per
cluster) search, and O is the BBN metric value for the opti-
mum (true) partition'. Clustering efficiency thus describes
system performance as a fraction of O — F'. Use of the term
“efficiency” is somewhat inappropriate since it is possible
to select a partition whose clustering efficiency is negative
(i.e., IBBN(C) < F)

Clustering efficiency =

2.4 Purity estimation

Evaluation of the BBN metric requires knowledge of the in-
ternal composition of the clusters in order to compute the
cluster purities p;. In practice, of course, the data is unla-
beled and the purity is not known. To evaluate the BBN
metric on unlabeled data we use the nearest neighbor purity
estimator described in [3]. Briefly, the algorithm operates
as follows: For each of the n; elements of candidate cluster
i, identify the nearest neighbors based on distance and cal-
culate the fraction of the n; nearest neighbor messages that
are members of cluster . Then p;, the nearest neighbor pu-
rity estimate of cluster i, is the average of the n; fractions.
In practice it has been observed that this purity estimator
underestimates purities for small clusters and overestimates
purities for large clusters. Recently, BBN has obtained im-
proved clustering efficiency performance by adding a size
dependent bias to the purity estimates [6].

3 CLUSTER GENERATION AND SELECTION

3.1 Hierarchical clustering

Hierarchical clustering is a well-known method for gener-
ating candidate clusters from a distance matrix [4]. In ag-
glomerative clustering, all messages start as singleton clus-
ters and are iteratively combined in a minimum-distance,
pairwise fashion until only a single cluster containing all the
messages exists. In divisive clustering, all messages start in
a single cluster which is iteratively split using a best-split
criterion until each cluster contains exactly one message.

A tree produced by either type of hierarchical cluster-
ing contains exactly 2IV —1 candidate clusters (this includes
the N singletons clusters). Two methods were evaluated for
selecting the best partition of the candidate clusters. The
simplest method, called level cutting, is equivalent to slicing
the tree horizontally at each merge level. The partition se-
lected is the one whose BBN metric, using estimated purity
values, is maximum.

Level cutting does not necessarily identify the best pos-
sible partition of a set of candidate clusters since the best
partition does not, in general, occur at a horizontal cut.

1t is easy to show that F = N(1 — Q) and O = N — N;Q,
where N is the total number of messages [3].



Better scoring partitions may be obtained by combining
clusters (nodes) occurring at different levels of the tree, but
consideration of all possible combinations of nodes in a tree
is computationally prohibitive. To make the non-level cut-
ting computationally tractable, we implemented a sequen-
tial, best-first search technique, wherein the “best” scoring
node is selected from the tree, the node’s descendants and
ancestors are removed from further consideration, and the
selection continues until no nodes are left in the tree. To
preserve the effect of the parameter () when comparing clus-
ters, we have defined the score of each cluster in the tree
as the per-message cluster value p; — Q/n;. Using the ac-
tual contribution of a cluster, n;p; — @), tends to favor very
large but impure clusters in selection. We expect that this
non-level cutting algorithm will identify a partition whose
clustering efficiency is at least as good as, and potentially
better than, that produced by level cutting.

3.2 d* clustering

The d* clustering algorithm is an integrated cluster gen-
eration and selection strategy that partitions the data into
hyperspheres of radius d. The algorithm is based on the
notion that the distribution of distances between messages
of the same attribute class will be well separated from the
distribution of distances between messages of different at-
tribute classes. Thus, in general, same-attribute-class mes-
sages should be tightly grouped together. If we can lo-
cate a centroid for one of these groups, we should be able
to create a pure cluster by retaining all messages which
lie within a radius of d from the center, where d sets the
tradeoff between not capturing same-attribute-class mes-
sages (misses) and accepting different-attribute-class mes-
sages (false alarms). In the first version of the algorithm,
called the fixed d* algorithm, it is assumed that an “opti-
mum” value of d (d*) has been selected a priori, perhaps
by analyzing distance distributions from some development
messages. Every message is treated as a candidate cen-
troid with cluster members consisting of messages within
radius d* We identify the first cluster as the one with the
highest per-message cluster value p; — @Q/n;. The members
of this first cluster are removed from further consideration
and these steps are repeated with the remaining N — n;
messages to identify the second cluster, continuing until all
messages are clustered.

The variable d* algorithm is a generalization of the fixed
approach and does not require choosing a radius a prior:.
Each message is assumed to be the centroid of several can-
didate clusters whose radii vary from dmin t0 dmaz. In our
experiments, dmin iS set to the 0.1th percentile and dyaz
to the 10th percentile of the distance distribution with 10
equal-spaced candidate radii between them. With N ob-
jects and ng values of d, there will be N*ng initial candidate
clusters from which the one with the highest p; — Q/n; is
selected. Members of the selected cluster are removed from
consideration and the next best cluster is selected. The al-
gorithm proceeds until all messages are clustered. Results
presented in this paper are for the variable d* clustering
algorithm only. Note that d* clustering is similar to the
partitioning class of clustering algorithms [4].

4 DATABASES

4.1 Speaker

The speech data used for speaker attribute clustering con-
sisted of 1369 messages chosen from the 1996 NIST speaker
recognition evaluation target test set [5] which is derived
from the Switchboard telephone speech corpus. The mes-
sages are nominally 30 seconds in duration and contain
speech from one of 397 speakers (225 males in 853 messages
and 172 females in 516 messages). The number of messages
spoken by each speaker ranged from 27 (2 speakers) to 1
(41 speakers).

4.2 Language

The speech data use for language attribute clustering con-
sisted of 783 10-minute messages chosen from the Callfriend
telephone speech corpus [5]. The messages were spoken in
12 languages by both male and female speakers and the
conversation sides were summed. Thus, each message con-
tained 2 male speakers, 2 female speakers, or 1 male and
1 female speaker. No speaker appeared more than once in
the data set. Phone sequences were obtained by processing
the messages with an HMM-based English phone recognizer
trained on the OGI Language-ID speech corpus [2]. The
phones were further labeled as being of long or short dura-
tion using the tagging scheme described in [2]. We tested
the blind message clustering system on the full 12-language
783-message set (“ALL”) as well as on two 4-language sub-
sets (“ASIA” and “EURO”); see Figure 2.

SUBSETS

LANGUAGE MESSAGES

"ALL" "ASIA" "EURO"
ARABIC 56 X
ENGLISH 92 X X
FARSI 55 X
FRENCH 59 X X
GERMAN 58 X X
HINDI 58 X
JAPANESE 59 X
KOREAN 55 X
MANDARIN 91 X
SPANISH 91 X X
TAMIL 54 X
VIETNAMESE 55 X X
TOTAL 783 297 300

Figure 2: Composition of language subsets.

5 EXPERIMENTS AND RESULTS

5.1 Distance measure evaluation

The key to successful clustering is the ability of the distance
measure to produce smaller values for distances between
messages of the same attribute class and larger values for
distances between messages of different attribute classes.
We have found it useful to evaluate the distance measures
we are using by plotting the separation of these two types of
distances using the Detection Error Tradeoff (DET) curve.
For this purpose all distances were classified as either same
(distance between messages of the same attribute class) or
different (distance between messages of different attribute
classes). We then swept out an attribute-class independent



threshold over the ordered distances and plotted false re-
jection vs. false acceptance probabilities. The distributions
and DET curves for both the speaker and language sets are
shown in Figure 3. These plots lead us to expect much bet-
ter clustering performance for the speaker attribute than
for the language attribute.
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Figure 3: DET curves and distributions for speaker and
language data. DET curves plot miss vs. false alarms. Dis-
tributions show same (solid) vs different (dashed) distances.

5.2 Clustering efficiency

Table 1 presents the clustering efficiency results for three
blind message clustering approaches using the 1369-message
Switchboard speaker set (SW_1369) and the three Call-
friend language sets (CF_all, CF_asia, CF_euro). We used
the agglomerative method of hierarchical clustering for these
tests since experiments indicated that it performed better
than the divisive method. Non-level cutting results are
shown only for the speaker attribute, as explained in Sec-
tion 6. Clustering performance for the speaker attribute is
much better than performance for language attributes, as
predicted by the DET curves. Results show that the best
clustering performance as measured using the BBN metric
was obtained using the d* clustering algorithm?.

Hierarchical
Attribute | Data Level Non-level d*
Speaker SW_1369 | 0.509 0.574 0.611
CF_all 0.044 - 0.122
Language | CF_asia 0.069 - 0.182
CF_euro 0.065 - 0.242
Table 1: Clustering efficiency for speaker and language

data

2Using the improved biased purity estimator, BBN has ob-
tained efficiencies for level cutting hierarchical clustering that
are higher than the scores for d* shown in Table 1 [6].

6 DISCUSSION

In both the d* algorithm and the non-level cutting version
of hierarchical clustering, estimated purities are employed
as part of the sequential selection of the final cluster set.
Because of the nature of the nearest neighbor purity esti-
mator, additional constraints must be imposed on the selec-
tion process in order to avoid selecting poor, but apparently
pure, clusters. This problem arises because a cluster com-
prising a large subset of messages, regardless of its compo-
sition, will be relatively isolated with respect to the entire
set of messages and will be regarded as “pure” by the purity
estimator.

For the non-level cutting approach this problem can
be avoided by selecting a maximum tree level above which
searches for candidate clusters are forbidden. This restric-
tion translates to selecting a minimum number of clusters
for the partition. Although the approach worked well for
the speaker case, it was difficult to quantify and did not
generalize well for language clustering. For this reason, the
non-level cutting approach was not pursued further. For
the variable d* algorithm this problem is avoided by reject-
ing any candidate cluster containing more than 10%?> of the
messages in the data set. Resulting partitions will contain
at least 10 clusters, a suboptimal outcome for data con-
taining fewer than 10 attribute classes. The impact of this
rule depends on the value of @: For small @), fragmentation
of messages of the same attribute class into several clusters
may have little effect (see Eq. 3); for large @, fragmentation
may be costly.

7 CONCLUSIONS AND FUTURE WORK

This paper has examined an extension of the classic super-
vised speaker and language recognition tasks to an unsu-
pervised clustering task. Application of distance measures
based on state-of-the-art speaker and language recognition
techniques along with the integrated cluster generation and
selection d* algorithm were found to be very effective (in
terms of clustering efficiency) for the speaker attribute but
rather limited for the language attribute. Gains in lan-
guage clustering will likely require better language attribute
distance measures and purity estimators. Future work for
speaker clustering will focus on extending the current ap-
proach to work with multi-speaker utterances.
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