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ABSTRACT

This paper explores some issues in designing conversational sys-
tems with integrated higher level constraints. We experiment
with a configuration that combines a context-dependent acoustic
front-end, using MIT’sSUMMIT recognizer, withANGIE, a hi-
erarchical framework that models word substructure and phono-
logical processes, and withTINA, a trainable probabilistic nat-
ural language (NL) model. Working in the Jupiter weather
domain, we develop a computationally tractable system which
incorporates higher level linguistic, prosodic and phonological
constraints together in the second of a two-pass strategy. Ex-
periments are evaluated using a new understanding performance
metric, and the new integrated system achieves up to 17.1% rel-
ative reduction in understanding error and 15.4% reduction in
word error. In addition, we investigate the possibilities of a two-
pass system which relies on the first stage for pruning based
on syllable-level constraint, and applies linguistic and prosodic
knowledge largely at the second stage.

1. INTRODUCTION

One critical area in developing speech understanding systems
is the intelligent integration of structured linguistic knowledge.
Our research is concerned with exploring various strategies for
incorporating multiple linguistic knowledge sources with speech
recognition in a tightly integrated manner, that is, to apply these
constraints early in the recognition search process. In a tightly
coupled control strategy, partial hypotheses are advanced accord-
ing to high scores attributed to constraints such as prosody, se-
mantics and syntax as well acoustics and phonology. This ap-
proach ultimately encourages final hypotheses that are linguisti-
cally meaningful, and leads to improvement in understanding as
well as recognition. The difficulty in such an integrated approach
lies in the expensive computational requirements, involving mul-
tiple searches.

This paper will describe some exploratory system designs for in-
tegrated conversational systems with near real-time constraints.
This work follows on the research described in [5]. Our focus is
mainly on the real-time issues demanded of conversational sys-
tems. To achieve efficiency, we are integrating multiple-level lin-
guistic constraints into a high-quality acoustic-phonetic network
derived from theN -best outputs of the MITSUMMIT recognizer
[2]. We are also interested in achieving domain-independence

1This material is based upon work supported by the National Science Foun-
dation under Grant No. IRI-96187321.

in the first stage; towards this goal, we report on results when
the SUMMIT system is restricted to subword units as its lexicon.
We are more concerned withunderstandingthan withrecogni-
tion accuracy. Thus we developed and utilized an understanding
metric for evaluation.

All experiments are conducted in the Jupiter weather domain.
Developed at MIT, this consists of spontaneous, telephone-based
inquiries into weather-related information [7]. For the linguis-
tic constraint, we have combined our existingANGIE andTINA

systems into a single framework. ANGIE and TINA are both
trainable probabilistic hierarchical models based on context-free
grammars [6]. ANGIE models morpho-phonemic and phono-
logical phenomena in a bottom-up multi-layered representation,
whereasTINA is the top-down NL framework used in our con-
versational systems. We have designed a configuration that com-
bines the high quality acoustic modelling of theSUMMIT recog-
nizer with both the bottom-up sublexical constraints ofANGIE

and the top-down NL constraints ofTINA. Our experiments in-
volve a two-pass system where theN -best outputs of aSUMMIT

recognizer are used to construct a compact acoustic-phonetic
network. A second search through this network uses a parallel
ANGIE-TINA control strategy, as developed in [4].

While this first experiment aims to show the benefits of the com-
bined systems, it is only a preliminary step towards a more flex-
ible system design. We are interested in further exploring a de-
sign where the first pass network is restricted tolow level lin-
guistic and phonological knowledge, while the second pass im-
plements a parallel application of higher order linguistic knowl-
edge and NL. We have begun to move towards this goal in a
second pilot study where recognition in the initial pass requires
only a lexicon of syllable-like units while word-level linguistic
constraints are exclusively enforced in the secondANGIE-TINA

pass. We will present some encouraging results from this sys-
tem.

2. SYSTEM DESIGN

Our ultimate goal is to design a two-pass system where the first
pass produces a phone graph based only on acoustic and syllable-
level information and the second pass incorporates domain-
specific higher level constraints viaTINA and ANGIE. In an
initial pilot experiment, we used the existingSUMMIT Jupiter
recognizer as the first pass, decomposing the resultingN -best
list back into a phone graph with associated context-dependent
acoustic scores. Unless otherwise indicated, all experiments are
based on the10 bestSUMMIT hypotheses, yielding a very com-



pact and high quality acoustic-phonetic network, which becomes
the input to a search incorporatingANGIE andTINA (which we
refer to asANGIE-TINA).

2.1. The SUMMIT Recognizer

SUMMIT is a segment-based recognizer, and in the Jupiter do-
main, it utilizes context-dependent diphone boundary models.
In total, there are 68 phonetic units and 631 diphones, includ-
ing transition and internal units. For acoustic features, 8 differ-
ent averages of 14 Mel-scale cepstral coefficients measurements
are computed from regions within a 150 msec window surround-
ing each boundary at every 5 msec frame interval. The resultant
112 dimensional vector models the boundary of each diphone.
A diagonal Gaussian mixture (using a maximum of 50 Gaussian
kernels) is created for each model.

To model phonological variations among words, the system uti-
lizes a pronunciation network generated from the phonetic base-
form, and expanded through the application of hand-written
phonological rules. The system also incorporates a bigram in
a forward Viterbi search that yields the best scoring hypothesis,
and a reversed trigram in a backwardA∗ search, which generates
N -best outputs.

2.2. The ANGIE Framework

ANGIE is a system for speech analysis which characterizes
word substructure via a multi-layered hierarchical representa-
tion. It combines a trainable probabilistic framework with a
hand-written context-free grammar. From bottom to top, the lay-
ers capture phonetics, phonemics, syllabification and morphol-
ogy. Also, stress information is embedded explicitly throughout
sublexical nodes of the hierarchy, and the phoneme to phone lay-
ers govern phonological events.

ANGIE’s parser proceeds in a bottom-up, left-to-right manner,
advancing column2 by column. Upon the completion of a word
parse,ANGIE yields a linguistic score that comprises log prob-
abilities of each column which, in themselves, are sums of tri-
gram bottom-up probabilities and conditional probabilities for
advancing columns. Training is conducted on automatically gen-
erated phonetic alignments for a large set of training utterances.
ANGIE’s phonological rules have been adjusted to match with
SUMMIT’s rules and phonetic inventory. It has been shown that
ANGIE’s phone perplexity is lower than that of a phone trigram
(see [4]), and we have successfully employedANGIE’s linguistic
model in aid of a variety of recognition tasks.

In addition, we have shown that the flexibility ofANGIE extends
towards modelling prosodic events. Based on the same under-
lying paradigm is a statistical hierarchical duration model that
accounts for rate of speech effects on durational relationships
among sublexical units [1]. The model yields a word duration
score that sums log probabilities of node durations throughout
the structure.

2.3. The TINA Framework

Like ANGIE, TINA is based on a hand-written context-free gram-
mar but it is augmented by (1) a set of features that enforce syn-

2This refers to the nodes along a given path from the root to the terminal.

tactic and semantic constraints, and (2) a trace mechanism that
handles movement phenomena. Within theTINA parse tree, the
probabilities depend on sibling-sibling transitions conditioned
on the parent context. TheTINA control strategy is implemented
in a top-down manner, and an NL score can be generated for
the next word candidate given the preceeding partial parse tree.
TINA also supports a “robust parse” mechanism, where, in case
of failure during full parse, it backs off to retain a partial parse
that carries a sentence fragment. In this way, we can achieve
meaning representations for agrammatical constructions and er-
rorful recognition hypotheses.

2.4. The Integrated ANGIE-TINA System

The integratedANGIE-TINA system manages the top-down de-
sign of TINA and the bottom-up approach ofANGIE in one top-
level procedure which keeps track of partial parses, correspond-
ing with the stack of partial paths, for each component. This
configuration grew out of the development of theANGIE word
recognizer [4], which utilizes a stack decoder, an approach well-
suited for the application of multiple higher order, long distance
language constraints. In this one-pass left-to-right algorithm, the
total score, computed at each newly extended partial path, is the
sum of the previous path score, an acoustic score for the new
phone candidate, and anANGIE linguistic score for the partial
word. When a word ending is hypothesized, a bigram score and
word duration score, derived from theANGIE hierarchical dura-
tion scheme, is also added.

With the addition of the NL component, theANGIE word rec-
ognizer hypothesizes a word candidate, and calls upon theTINA

parser, which stores a stack of partial parses corresponding to the
current path. TINA extends these parses with the word candidate,
at which point paths may be eliminated if failure is encountered
at every possible parse, or else the mostly likely parse yields a
score that augments the total path score. Moreover, an alterna-
tive robust parse strategy is implemented, which differs in the
original in its reduced computational cost, but similarly handles
spontaneous speech phenomena and recognition errors. Details
for this implementation are given in [4].

2.5. Morph-based Recognition

In our second set of experiments, we consider relaxing the lin-
guistic constraints in the first-pass system by restricting the lex-
ical information in theSUMMIT front-end to a set of morpho-
logical units. By stripping away word-level information in the
first pass recognizer, the burden of utilizing linguistic constraints
is now shifted towards the second stage. We are interested in
discovering the degradation in performance affected in the first
pass, and the ability of theANGIE-TINA strategy to recover that
loss. Our ultimate goal is to remove domain dependencies from
the first stage, and we recognize that this is only a step in that
direction.

The system remains identical, except that the word-based lan-
guage models of the original system are replaced by newly-
trainedmorph-based3 models. The first pass outputs a 10-best
list with morphs instead of words. The 1603-sized extended
morph lexicon is based on the original 1341 words in Jupiter.

3Morphs are syllable-sized units encoded with linguistic meaning.



Sentence Key-Value Pair

What is the temperature WEATHER: temperature
in boston tomorrow DATE: tomorrow

CITY: Boston
That’s all, thanks CLOSE-OFF: yes

Table 1: Examples of Key-Value Pairs used in the Understanding
Evaluation.

They are the same morphological units that are embedded in the
ANGIE parsing mechanism, and are therefore well-matched with
the ANGIE probability models. The acoustic-phonetic networks
are constructed in the same way as in the preceding experiment,
with an identicalANGIE-TINA second pass.

3. UNDERSTANDING EVALUATION

The ultimate goal in building conversational systems is to im-
prove upon overall understanding. This requires the availability
of an effective method for drawing comparisons in terms of un-
derstanding performance. In our work, we have devised an eval-
uation measure based on the semantic representation, afforded
by theTINA module.

Given a recognition hypothesis as input,TINA generates a parse
tree which can be automatically translated to a semantic frame
representation. From this, we employGENESIS [3], our lan-
guage generation module, to paraphrase the frame into a set of
predefined key-value pairs. This set is empirically determined
by judging which information in the semantic frame is important
in completing the Jupiter-based inquiry. As a result, we have a
simpler, collapsed meaning representation that captures only the
essential information required by the system to process the in-
quiry in our domain. Examples of key-value pairs are given in
Table 1.

To compute the final understanding error of a test set, we pre-
compute the key-value pairs corresponding to the original or-
thographies of the set as reference. In cases of parse failures in
TINA, this may be due toTINA ’s incomplete coverage, in which
case the transcription is manually rephrased such that a parse
can be generated while preserving the original meaning. In other
cases, this may not be possible, because a percentage of the ut-
terances lie outside the domain; that is, the spoken requests can-
not be handled by the system, and no alternative phrasing would
be interpretable by the dialog component. These reference key-
values are deemed missing. The final understanding error is
a percentage calculated from the total number of mismatches,
deletions and insertions against the reference key-values. For
missing key-values, in either the reference or hyptheses, dele-
tions are counted.

Because thisTINA module is identical to the NL module de-
ployed in the real-time system, we believe that the evaluation
method is a fair reflection of overall understanding performance.
It simulates the situation where the system in evaluation is inte-
grated with the dialog module; utterances with mismatched key-
values would be interpreted erroneously by the dialog compo-
nent of the real system; that is, a different action would result.

System Word Error Understanding
Rate (%) Error Rate (%)

1. SUMMIT Top 1 12.3 19.4
2. SUMMITN-Best 13.4 17.0
3. ANGIE only 10.4 16.2
4. ANGIE-TINA 11.1 14.1

Table 2: Comparing recognition and understanding perfor-
mance among various systems described in Section 4.

4. INTEGRATION EXPERIMENTS

For baseline comparison, we use theSUMMIT system, which out-
puts anN -best list for our subsequent experiments. We consider
the system performance under two modes of operation: (1)SUM-
MIT Top 1: the best scoring candidate is chosen and (2)SUMMIT

N -Best: a rudimentary algorithm is used to choose, from the
N -best list, the most likely utterance where a meaning represen-
tation can be obtained. The latter mode is used in our real-time
system, and is implemented with ourTINA NL parser as a post-
processor. We report on the successive performance gains of the
SUMMIT system from augmenting with (3)ANGIE alone, and
with (4) ANGIE-TINA fully deployed. Systems (1m), (3m), and
(4m) are the morph-based counterparts of (1), (3), and (4). All
experiments are evaluated on an unseen test set of 352 utterances.

The Jupiter system utilizes a 1341-sized word lexicon. Within
this lexicon, some commonly occurring adjacent words are
treated as a single word, e.g., “what is,” for added constraint4.
The ANGIE probabilistic grammar and the hierarchical duration
model are both trained on 11677 utterances. TheTINA word
grammar is separately trained on 6531 utterances.

5. RESULTS AND ANALYSIS

We will begin by reporting results for integration experiments
using the word-basedSUMMIT system, followed by results for
the morph-based experiments. Recognition and understanding
errors for the Systems 1–4, mentioned above are reported in Ta-
ble 2. WhenANGIE is applied, the word error rate reduces by
15.4% (from 12.3% to 10.4%) compared with the baseline Sys-
tem 1. This system (without any NL) achieves an understanding
error of 16.2% which improves upon the NL processing of Sys-
tem 2 (17.0%). WhenANGIE-TINA is fully integrated, the word
error rate of 11.1%, improves upon both System 1 and 2, and
outperforms each one in terms of understanding error, with a
value of 14.1%. This is a 17.1% error reduction relative to the
NL post-processing of System 2.

It is clear from these results that, firstly, system performance
benefits significantly from the combined probabilistic sublexi-
cal models ofANGIE and its duration model. The inclusion of
compound words enablesANGIE to incorporate the inter-word
phonological effects and pronunciation variations probabilisti-
cally in the sublexical parse structure, and we believe this has
contributed to enhancing performance. Secondly, an integrated
ANGIE-TINA achieves superior understanding performance via a
search strategy that enables meaningful partial paths to proceed.
It is also apparent that word error rate does not necessarily fall

4These units are retained in our morph experiments.



System Word Error Understanding
Rate (%) Error Rate (%)

3m. ANGIE only 11.8 18.1
4m. ANGIE-TINA 13.9 17.3

Table 3: Comparing recognition and understanding perfor-
mance among various systems which use a morph lexicon in the
SUMMIT front-end.

System Morph Error
Rate (%)

1. SUMMIT Top 1 10.8
1m. Morph SUMMIT Top 1 12.8
3m. ANGIE only 10.9

Table 4: Morph error rates for selected systems.

with understanding error, and this is particularly relevant in con-
sidering the underlying goal of improving understanding in the
design of conversational systems.

WhenN is raised to 100, theANGIE System 3 does not improve
significantly, although for theANGIE-TINA System 4, the un-
derstanding error improves to 13.6%. We can conclude that the
ANGIE-TINA guided search retrieves a greater number of correct
paths from the deeper network.

Final results for the morph-based experiments are tabulated in
Table 3. It can be observed that the word error rate (11.8%) in
System 3moutperforms that of System 1 (12.3%). Similarly, for
System 4m, understanding performance ofANGIE-TINA (17.3%)
is comparable to that of System 2 (17.0%). From this, we infer
that the sophisticated language models ofANGIE and ANGIE-
TINA recover most of the loss in performance incurred by the
morph lexicon.

We gauge the drop in performance from switching to morphs
by comparing the morph error rates for the morph-based best-
scoringSUMMIT output (1m) to the original best-scoring word-
basedSUMMIT (1) and the final integratedANGIE only word out-
put (3m), when given in terms of morph accuracy, as shown in
Table 4. There is an 18.5% degradation in using morphs (from
10.8% to 12.8% error) but this is largely recovered even when
usingANGIE alone with 10.9% error.

It should be noted that in comparing the word-based systems
against their morph-based counterparts, the former utilize a word
trigram within SUMMIT whereas the latter do not employ word
trigrams, and instead rely solely on a bigram andANGIE-TINA,
at the word level. We claim that performance would further im-
prove if a trigram were incorporated.

6. SUMMARY AND FUTURE WORK

The above results have shown that (1) an integratedSUMMIT

with ANGIE-TINA benefits both recognition and understanding,
(2) replacing words by morphs inSUMMIT still achieves a work-
able performance, and (3)ANGIE-TINA models are sufficiently
powerful to recover those losses, demonstrating the potential for
shifting the application of higher level language constraints to-

wards the integratedANGIE-TINA approach. However, these
experiments remain preliminary, and much work remains to be
completed. Some of these are ideas are outlined below.

Currently, the morph lexicon retains much word-specific infor-
mation which contributes to a strong performance in the front-
end. However, we envision a future system that relies more on
the second-pass search for domain-specific constraint. It is con-
ceivable that the high quality acoustic pruning of the first pass
could operate on a domain-independent syllable lexicon trained
on a generic English corpus, and the second pass would incor-
porate a vast array of domain-dependent linguistic information
in a fast and intelligent search. At this stage, we have repeated
the above morph experiment with a further reduced 1250-sized
syllable lexicon, and results similarly indicate that, while the re-
duced constraints inSUMMIT produce some marginal degrada-
tion, ANGIE-TINA recovers much of the degradation incurred.

We believe that reconstructing an acoustic-phonetic network pro-
vides a much richer search space than the alternative of simply
processing the topN hypotheses. Through cross-pollination ef-
fects, the second pass search may potentially traverse new and
improved paths which are favored byANGIE-TINA scores. How-
ever, from a design standpoint, this configuration is ultimately
suboptimal. It is also particularly slow when the value ofN
is as large as 100. Therefore, we hope to entirely replace the
N -best paradigm with a more efficient and direct methodology
for achieving a highly pruned space that enables real-time com-
putation associated with the complex parallel control strategies
required byANGIE-TINA, and where the size of the network can
be varied with flexibility.
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