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ABSTRACT using several minutes of adaptation data have shown little perfor-
mance differences between supervised and unsupervised adaptation
Confidence estimation of the output hypothesis of a speech recagthemes. The effectiveness of this particular adaptation process is
nizer offers away to assess the probability that the recognized worgeatly affected by the mis-labeled data due to the limited amount of
are correct. This work investigates the application of confidencgdaptation data. This observation motivates our use of confidence
scores for selection of speech segments in unsupervised speajgitrics to guide the adaptation process by selecting or emphasizing
adaptation. Our approach is motivated by initial experiments thapeech segments with high confidence.
show that the use of mis-labeled data has a significant cost in the
performance of particular adaptation schemes. We focus on a ragitie rest of the paper is organized as follows: in section 2 we briefly
self-adaptation scenario that uses only a few seconds of adaptatimutline the adaptation transform that we used throughout our ex-
data. The adaptation algorithm is based on an extension to tperiments, in section 3 we define the confidence measures and in
MLLR transformation method that can be applied to the observaection 4 we describe the experimental setup and the current results
tion vectors. We present experimental results of this work on thef our work.

ARPA WSJ large vocabulary dictation task.
2. CONSTRAINED MODEL-SPACE
1. INTRODUCTION ADAPTATION

Recently, confidence estimation of the output string of a Spee%aptation methods have become important components of large
recognition system has become an important topic of research [#capulary speech recognition systems as they compensate for mis-
5,8, 9]. As speech recognition systems find their way into reghatches between training and testing conditions, which are caused
world applications, confidence provides a way to assess the impee to different speaker characteristics and channel or environment
fect recognition results, and detect out-of-vocabulary (OOV) wordggngitions. Model-based approaches, suciMagimum A Poste-

or gener_ate re_pair dialogs in a natu_ral language system. In this Qayyi (MAP) estimation [3] and linear regression adaptation [1, 7]
per, we investigate the use of confidence annotation of the recoglsye shown significant improvements in recognition accuracy by
nizer output in an unsupervised adaptation scheme. adjusting the parameters of a speaker independent (Sl) system based

— . . . . n speech material (adaptation data) which is representative of the
In many applications it is not feasible to obtain adaptation data 91

the new condition or speaker prior to the use of the system. In su
cases, the adaptation data consist of utterances of the speaker
are spoken during the transaction. Taisline adaptation process

makes use of the data as they sequentially become available,

ew condition. In this work we have applied an extension of the
Vbaximum Likelihood Linear Regression (MLLR) approach termed
{¥¥strained model-space adaptation. It is a maximum likelihood
matrix transformation that is applied to the means and the variances

transcription of the speech data is not known. Instead, the mog

likely hvpothesis that i nerated by the r nizer i d1o ali 6mpared to the original MLLR is that it can be applied to the ob-
€ly hypoihesis hal IS generated by the recognizeris used 1o allqR e feature vectors, thus avoiding the computationally expensive
the speech waveforms for the adaptation process.

update of the model parameters. This transform has been originally

We examine a rapid adaptation scherself-adaptation that uses proposed in [2] where the interested reader will find a detailed pre-

only a few seconds of data. In this approach, we use the speech d3Atation of the topic.
and recognition result of a single sentence to adapt the system aﬂg
then recognize the same sentence again. We present experimenta?
results that show that self-adaptation provides a significant reduc-
tion in the word error rate of 10%. Previous adaptation results [6]

constrained model-based transform has the general form

= Aup-—by (1)
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In [1], the problem was solved for the diagonal transformation cas&or computational expediency, we estimate a set of monophone
Our application follows [2] where a solution for the full matrix caseGaussian mixture densities, so that each monophone is modeled
is provided assuming that the original models have diagonal covatyy a 3-state HMM with all states tied to the same Gaussian mix-
ance. It is easily shown that the transformation of the Gaussian paxe density. Using Viterbi alignment, we find the phone-frame
rameters corresponds to an equivalent transformation of the featwrerrespondence of the recognizer output and compute the numer-
vectoroy: ator using the monophone Gaussian densities. By tying all states of
the monophone models, the denominator is found by a fairly inex-
pensive dynamic programming application while enforcing a mini-

um three frame time constraint. In practice we further simplified

g denominator by computing the maximum score instead of the
sum. In this work we assume that all prior probabilities are uni-
form. This formulation can be extended by incorporating statistics
for the phone sequences in the form of bigram statistics at the phone
L(o;p,E,A,b) =N (Ao, +b; 1, X) +log (|A]) (4) level.

thus avoiding the computationally expensive update of the model 4 EXPERIMENTS AND DISCUSSION

parameters.

6:= Ao +b= Ao+ A,/ by (3)

It is now evident that the constrained model-space transform m
be implemented as a transformation of the observed feature and
likelihood of an observation; for a particular Gaussiat” (i, X)

is computed as:

The baseline recognition system is a speaker independent, continu-
3. CONFIDENCE METRICS ous density, tied-state, cross-word triphone HMM system developed
] ) at Motorola, Lexicus. The speech was parameterized into a 39 di-

Most speech recognizers assign scores to word and sentence fnsional feature vector that includes 12 MFCCs, the normalized
potheses that are not absolute measures of probability but rathgg energy and the first and second differences of these parame-
relative measures used to rank order hypotheses. Therefore the 16z The acoustic training data consists of 7,200 sentences from
ognizer scores are not comparable across different sentences andipgts|-g4 WsJo corpus. The resulting system has approximately
useful as confidence measures. Instead, we compute two confideRgenoo Gaussians. The recognition experiments were conducted on
metrics, one derived from word lattice densities and one based &¥e 20,000 word open vocabulary and the 5,000 word closed vocab-

clusively on acoustic scores. ulary sets from the November 1992 DARPA evaluation that consist
. . of 333 and 330 sentences respectively. A time-synchronous single
3.1. Lattice Density pass decoder using the standard bigram languange models supplied

. . . the data was used in the experiments. In order to perform Viterbi
During recognition, hypotheses whose likelihood scores fall besjignment of the reference word transcription, the 20K word pro-

low certain thresholds are considered unlikely and pruned from the, | i-iion dictionary is augmented to include any words of the ref-
search space. In time segments where the likelihood for a partigfence transcription which would otherwise be OOV.

ular word is much higher than the likelihood of other competing

hypotheses, many of the competing other words are pruned. Cofe first calculated the confidence score estimafed;,; and
versely, if a large number of words has similar likelihood, the num¢: 3y, .. The word and phone sequences hypothesized during recog-
ber of propagating hypotheses will be relatively high. It has beegition are aligned to the reference word and phone sequence in order
shown in the literature [4, 5, 8, 9] that the uncertainty of the recto label each decoded hypothesis as either correct or incorrect. The
ognizer expressed by the number of hypotheses in a time segmeiiieling takes into account time information and marks as incorrect
correlates with the word error rate for that time segment. For eagggments with less than 80% overlap.

word in the word lattice we comput€; M., the number of com-

peting hypotheses that end at the same time, normalized in the rarfgig. 1 shows the histograms of the lattice density based confidence

[0,1]. scoresC' M, for the correctly and the incorrectly recognized hy-
potheses for the 20K test set. The second plot in Fig. 1 shows
3.2. Acoustic Confidence Measure the cumulative probability functions of the confidence scores for

the correct and incorrect hypotheses. Fig. 2 shows corresponding
The C' M, confidence metric depends implicitly on the languageplot for the phone-level acoustic confidence. These graphs show
model and dictionary constraints that control the breadth of thghat C'M;,; is a indicator of word confidence, a result consistent
recognition search space. Our second confidence n@fvig. is  with [4, 9]. The acoustic based confidence, even though it provides
solely based on acoustic scores and can be applied either on tbss separation between correct and incorrect hypotheses, was found
word or the phone level. It is defined as the posterior probabilityseful in selecting phone segments that are correctly labeled in an
that a particular phone or word is uttered during a time segment, otherwise mis-recognized word which simply matches part of the
given the sequence of acoustics observati@rer that segment pronunciation of the reference word.

CM,. = P (w|O) = P (Olw) P (w) (5) We conducted a number of experiments to evaluate the effect of su-
> gco P (Ola) P (q) pervision in the adaptation process in the incremental and the self-
adaptation schemes. During incremental adaptation, the adaptation

where@ is the set of all possible phone sequences in the time Segélrameters are updated after the recognition of a test utterance using

ment.
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ble 1 summarizes the results of these experiments. These results
show that supervised adaptation has little or no effect in the adap-
tation process, possible due to the relatively low error rate of the
recognized hypotheses. In the self-adaptation scheme, each utter-

| Condition | 05K | 20K ]
Baseline 7.7% | 12.5%
Unsupervised Incr. Adaptation 6.0% | 10.8%
Supervised Incr. Adaptation| 6.0% | 10.7%

o8 S o Table 1: Effect of supervision on the adaptation process for incre-

’ T mental adaptation on the ARPA November 1992 05K and 20K test
0.6 et T sets. Adaptation is performed using the constrained model-space
od U transform method.
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oLz - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ance is initially recognized using adaptation parameters that are ini-

Figure 1: Distribution of lattice density based confidence scores for
correctly labeled (solid line) and incorrectly labeled (dashed lin
hypotheses. The second subplot shows the cumulative probabili

functions of the two distributions
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tialized to identity. Then the adaptation parameters estimated using
the statistics from the alignment of the recognized hypothesis. The
adaptation transform is applied to the observation stream and the

tterance is recognized again. To evaluate the effect of supervi-
%on, we performed a wizard experiment whereby we labeled the
rgcognized hypothesis with correct and incorrect tags based on the
reference word transcription. We then used only the time segments
that were labeled as correct to estimate the adaptation parameters.
The results of these experiments are shown in Table 2. We observe
that adaptation on a few seconds of speech is enough to provide a
significant reduction in word accuracy, comparable to the incremen-
tal adaptation scenario that uses considerably more data (at least for
the 20K test). Furthermore, the wizard experiment shows that mis-
recognized segments greatly affect the performance of the adapta-
tion due to the limited amount of data, which is an encouraging re-
sult for the application of confidence metrics to guide the adaptation
process.

| Condition | 05K [ 20K |

! T Baseline 7.7% | 12.5%
0.8 L , Unsupervised Self Adaptation 6.9% | 11.0%
0 L | Correct-only Self Adaptation| 6.5% | 10.3%

' e Confidence + Self Adaptatior) 6.7% | 10.8%
0.4 et ,
0.2 e T . g Table 2: Effect of supervision on the adaptation process for self-
== ‘ ‘ ‘ ‘ ‘ ‘ ‘ adaptation on the ARPA November 1992 05K and 20K test sets.

Adaptation is performed using the constrained model-space trans-
form method. Correct-only self adaptation indicates the wizard ex-
Figure 2: Distribution of phone-level acoustic confidence scores foPeriment, where mis-recognized segments are discarded.

correctly labeled (solid line) and incorrectly labeled (dashed line)

hypotheses. The Second subplot shows the cumulative probabilifye applied a heuristic selection of speech segments for adaptation
functions of the two distributions based on the word-level lattice density confidence scores and the
phone-based acoustic confidence scores. We rejected all segments
that correspond to words withi M, below a threshold,, ., but re-
tained any phone subsegments that@ad, . higher than an acous-
the accumulated statistics of all incoming test utterances up to théit confidence thresholé..,;. Similarly, for the speech segments
point. The updated parameters are used to recognize the followimgth C M,,. greater thad;,,; that are accepted, we discarded phone
utterance. These statistics are gathered by aligning the observatmrbsegments that had/,. lower than a second threshofd. »
sequence to the recognized hypothesis in the unsupervised modesoch thatf,..» < 6.c,1. These confidence thresholds are exper-
to the reference word transcription in the supervised model. Tamentally determined based on the distribution of the confidence



scores. Unfortunately, our results so far (Table 2) have shown sméll C.J. Leggetter and P.C. Woodland, “Speaker adaptation of con-

incremental improvements over the unsupervised scenario. tinuous density HMMs using multivariate linear regression”, in
Proceedings of International Conference in Spoken Language
5. CONCLUSIONS Processing1994.

We reported on th lication of th nstrained model 7. C.J. Leggetter and P.C. Woodland, “Maximum likelihood linear
¢ reported o € appiication ot the constraine odel-space regression for speaker adaptation of continuous density hidden

transform, a new formulation of the Maximum Likelihood _Linear Markov models”, Computer Speech and Languagel. 9, pp.
Regression transform for speaker adaptation. An attractive prop- 171-185. 1995

erty of this approach is that it can be applied as a transformation ' ’

on the observation space, thus incurring little computational co§ M. Siu, H. Gish, and F. Richardson, *“Improved estimation,
for on-line adaptation schemes. We then examined the effect of su- €valuation and applications for confidence measures for speech
pervision on two on-line adaptation schemes, incremental and self- recognition”, inProceedings of European Conference on Speech
adaptation. Our experimental results showed that the use of the ref- Communication and Technology (EUROSPEECH)97, pp.
erence word transcription provides very little additional benefit in 831-834.

the context of on-line incremental adaptation. 9. G. Wiliams and S. Renals, “Confidence measures for hybrid

) ) ) HMM/ANN speech recognition”, irProceedings of European
Self-adaptation, the process of adapting on a single utterance andConference on Speech Communication and Technology (EU-
then recognizing this utterance again, is better suited for very short ROSPEECH)1997, pp. 1955-1958.

interactions with a speech recognition system, where the system
needs to adapt rapidly based on a few seconds of speech. In this
case the use of mis-labeled speech segments greatly affect the per-
formance of adaptation. We proposed the use of two confidence
measures to discard speech segments with low confidence that prob-
ably correspond to mis-recognitions. We used a word-based lattice
density metric and a phone-based acoustic confidence metric for
our experiments. The results have only shown marginal improve-
ment over the unsupervised self-adaptation case. This could be
attributed to the accuracy of the particular confidence metrics and
the heuristics that we employed for the selection of the high con-
fidence speech segments. Our current work addresses these issues,
to improve the accuracy of the confidence scores and the selection
algorithm, as well as investigate alternative confidence metrics and
decision strategies.
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