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ABSTRACT the resulting graphs appear to be a better match to the subse-
) . . o o guent segment-based search. Thus they can generally be smaller
In this yvork, we_|nvest|gate_modlflcatlons toa prot_)abl_llstlc S€Jthan our acoustic segmentations, and have improved phonetic
mentation algorithm to achieve a real-time, and pipelined capap word recognition accuracies as well [6]. Although this prob-
bility for our segment-based speech recognizer [4]. The existingyjjistic segmentation algorithm is effective, it is computation-
algorithm used a Viterbi and backwards search to hypothe- 4y intensive, and cannot run strictly in a left-to-right fashion.
size phonetic segments [2]. We were able to reduce the Comy this work [10], we describe modifications to the algorithm

putational requirements of this algorithm by reducing the effeGyichy enable us to achieve real-time recognition performance
tive search space to acoustic landmarks, and were able to achigyg|e maintaining the improved quality of the graphs.

pipelined capability by executing th&* search in blocks defined
by reliably detected phonetic boundaries. The new algorithm 2. EXPERIMENTAL FRAMEWORK
produces 30% fewer segments, and improvesiT phonetic
recognition performance by 2.4% over an acoustic segmentatidxperiments for this work are conducted in phonetic recogni-
baseline. We were also able to produce 30% fewer segments ton and word recognition. For phonetic recognition, theiT
a word recognition task in a weather information domain [11]. acoustic-phonetic corpus is used [8]. As is frequently done by
others to reportriMIT recognition results, the set of GamIT
1. INTRODUCTION labels are collapsed into a set of 39 labels [9]. For word recog-
ition, theJupPITERcOrpus is used [5]. The corpus consists of

. n
The summIT segment-based speech recognizer developed % ontaneous speech data from a live telephone-based weather

our group searches an acoustic-phonetic graph during the dec ormation system. While complete experimental results are

ing phase [4]. Although this graph can conceivably contain a resented here forimIT, only final results are presented for
possible segmentations of the speech signal, we have traditi NipiTERdUE to space Iirr'1itati0ns.
ally chosen to incorporate an explicit segmentation phase into the
recognizer in order to reduce the size of the search space. TO&erances are represented by 14 MFCCs computed at 5 ms
segmentation has typically consisted of restrictingltioations intervals. Both boundary-based diphone models and segment-
of phonetic transitions, by identifying a set of allowable boundbased models are used. The context-dependent diphone models
aries or landmarks, and also restricting the setarfinections are mixtures of diagonal Gaussians based on MFCC averages ex-
between landmarks (i.e., hypothetical phonetic segments).  tending out to 75 ms on both sides of the boundary [5]. The seg-
ment models are also mixtures of diagonal Gaussians, based on
easurements taken over segment thirds; delta energy and delta
CCs at segment boundaries; segment duration; and the num-
er of boundaries within a segment [4]. Language constraints
f all recognition experiments are provided by a bigram. Error
e is computed as the sum of substitutions, insertions, and dele-
s. To measure computation, a real-time factor is used. lItis
ned as total recognition processing time on a 200MHz Pen-
ftim Pro, divided by the total time of the speech utterances being
Bcessed. A number greater than one translates to processing
bwer than real-time.

3. LANDMARK-BASED REPRESENTATION

The use of a segmental framework for recognition allows us t
consider a richer set of acoustic-phonetic features than can
incorporated into conventional frame-based representations |
Currently, for example, feature vectors are extracted for phonet,
analysis both over hypothesized phonetic segments and at th
corresponding boundaries. We have always realized, howev%
that the use of an explicit segmentation stage can be a sourceacéﬁ]i
possible error if necessary phonetic segments are not hypotq
sized. Unfortunately we cannot search the entire segment sp
in near real-time; thus the segmentation stage is an import
component in our recognizer.

Our earlyacousticsegmentation methods used spectral informa-

tion to identify landmarks and segments [3]. More recently, Weh our original probabilistic segmentation procedure the first pass

have developed a segmentation procedure which uses a frarBﬂ- . i .
T N . onetic recognizer is frame-based [2]. In this work, we sought
based Viterbi and backward" to produce a phonetic graph [2]. to reduce the computational requirements of the algorithm by

Since this method uses probabilistic acoustic-phonetic mOdeI§1’1rinking the search space of the first pass recognizer. Instead of

1This research was supported by DARPA under contract N66001—96—C—852§,(:9ring at regularly spaced 10 ms _frames, we firgt inVEStiga_ted
monitored through Naval Command, Control and Ocean Surveillance Center. using lower frame-rates. In addition, we experimented with




| Frame-interval (ms) Error Rate (%)| Real-Time Factor] block #1 |block #2 | block #3 | block #4
10 (constant) 28.9 3.01

20 (constant) 28.2 1.52 i it -

- | -—p | -§—p | |§———p
30 (constant) 29.4 1.01

33 (variable) 28.5 0.92 ¢ ¢ ¢ ¢

N best N best N best N best
guesses |[guesses | guesses guesses

Table 1: TIMIT devset results for various frame rates.

landmarksthat have been detected by a spectral change algo- ¢ ¢ ¢ ¢
rithm. These variable frame-rate landmarks have been success| segment |segment| segment| segment
fully applied previously to an acoustic segmentation algorithm, graph graph graph graph

and eliminate large amounts of computation spent considering
sections of speech unlikely to be segment boundaries [4].

To study the viability of decreasing computation by lowering theFigure 1: lllustration of block processing using hard boundaries.
frame rate of the first pass recognizer, we evaluated the phonetic
recognition performance and computation requirements usin

different frame rates. Although the segmentation algorithm pr _%speech spanned by the block, and the segment-graph for that

duces a graph of segmentations rather than just a single choigCtion is subsequently constructed. The algorithm continues by
we felt that overall top-choice performance would be correlateB™0cessing the next detected block. The end result is that the
to the overall quality of the corresponding graph. Frame-bas&tf9ment-graphis produced in a pipelined left-to-right manner as
diphone models were used for these experiments. the input is being streamed into the algorithm.

As shown in Table 1, the results are divided into two section&.2. Boundary Detection Algorithms

The top section presents results for regularly spaced frames, . .
and the bottom section presents results for variable spaced Iar;rd]-e boqndary detection algorlthm use(_j to detect the .blOCk
undaries must have two properties. First, the boundaries de-

marks. The table shows that as the frame-interval increases ((ﬁap— . ) )
ted must be very reliable, as thebest algorithm running

creasing frame rate), computation expectedly decreases. For ré “ach block i ol q t that
ularly spaced frames, error rate improves initially as the fram each block cannot possibly produce a segment that Crosses a

rate decreases but worsens substantially at very low frame rat é(.’Ck' A missed boundary bY the boundary detection algorthm_
For landmarks, error rate is competitive even when compared i%mUCh prgferred to one that_ls |ns§rt_ed because the probabilistic
the best error rate from regularly spaced frames. Overall, the tg@gmentatlon algorithm running within each block can hypothe-

ble shows that switching from a constant frame-interval of 10 m%'ze segment boundaries inside the block. Second, the boundary

to landmarks does not significantly degrade error rate, but signi letection algorithm must produce boundanes_ ata reas_onat_)le fre-
lency so that the latency for the segmentation algorithm is not

icantly reduces computation. Based on these results, all sub$¥,

quent experiments in this paper use a landmark-based search!©° long. In this work, two different boundary detection algo-

rithms were examined. They are described separately below.

4. BLOCK PROCESSING Acoustic boundaries The acoustic boundary detection algo-

In addition to minimal computation requirements, a real-timerithm detects probable segment boundaries based on acoustic
: P requirements, - ?hange. Boundaries are placed at major peaks of spectral change

algorithm must also be able to run in a pipeline. The origina; . ;

probabilistic segmentation algorithm could not run in a pipelinén the speech signal. These boundaries are a subset of the land-

because it relied on the backwaid search to produce th- marks used to save computation. A threshold on the height of

- . . .. the peaks controls the frequency of the boundaries. In this work,
best paths. This required the completion of the forward Viterbj . .
search before the backwart search could begin. This section the threshold is set such that a boundary is detected on average

: . . 0
addresses the pipelining problem and describes a block proceevery 200 ms. Using this threshold, approximately 85% of the

. : - . . ) ddtected boundaries mmiT were within 10 ms of an actual

ggiiggrgcTeﬁ?awzggit\ége;mﬁc i%irr?g:rsiégn Ilrrll tggfjli(tiso ﬁ%egment boundary in the phonetic transcription. Since even hu-
; 7 - mans fr ntly disagr he preci lacement of men

this section introduces the concept of soft boundaries to allo ans frequently disagree about the precise placement of segment

Boundaries, we believed this was a reasonable result.
the A* search to recover from mistakes by the boundary detec- ’

tion algorithm. Viterbi boundaries The Viterbi boundary detection algorithm
. is based on statistics in the Viterbi search. Boundaries are placed
4.1. Mechanics at frames where all active nodes above a threshold are transition

. . . i nodes. The threshold controls the frequency of the boundaries.
Figure 1 illustrates the block probabilistic segmentation algoy, this work, it was set to produce a boundary on average every

rithm. As the speech signal is being processed, probable sesjy ms. The performance of this algorithm is similar to that of
ment boundaries are located. As soon as one is detected, mg acoustic boundary detection algorithm.

algorithm runs the forward Viterbi and backwart searches
in the block defined by the two most recently detected boundexperiments In this experiment, the difference in performance
aries. TheA* search outputs thé&/-best paths for the interval between acoustic and Viterbi boundaries in the block segmenta-



tion algorithm was examined. The boundaries were evaluated (

segment-based recognition performance and computational | —WMWWW————*W*
quirements. TheaIMIT devset results are shown in Figure 2. | ~& -
Recognition performance in terms of number of segments p - >
second versus error rate, is plotted on the left, and computatic
performance, shown as the number of segments per second ver-

sus the real-time factor, is plotted on the right. The number drigure 3: lllustration of block processing using soft boundaries.
segments per second is controlled by a variallehat deter-

mines the number ofV-best paths to include in the segment-geqments per second versus the real-time factor, is plotted on the
graph. The acoustic boundaries are represented by the broﬁht. The soft boundaries are represented by the broken lines,
lines, and the Viterbi boundaries are represented by the solifhy the hard boundaries are represented by the solid lines. The
lines. The computation plots on the right show that they botif; recognition plot shows that the soft boundaries outperform
require about the same amount of computation. However, thge hard houndaries (especially at low segment rates) in terms
recognition plot on the left shows that Fhe _\ﬂterbl boundarle%f error rate, but the right computation plot shows that this per-
clearly outperform the acoustic boundaries in terms of recogniy mance comes at a cost of greater computation, as expected.
tion error rate. Therefore, all subsequentiT experiments Use - gimjjar results were obtained fouPITER This is one tradeoff

Viterbi boundaries. FopUPITER acoustic boundaries outper- 1, e taken into account when looking for an optimal operating
form Viterbi boundaries. All subsequentPITERexperiments point for the segmentation algorithm.

use acoustic boundaries.
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. . " ) Figure 4: Plots showing recognition and computation perfor-
Figure 2: Plots showing recognition and computation perfor{,ance of soft versus hard boundaries.

mance of acoustic versus Viterbi boundaries.
5. FINAL EXPERIMENTS

Based on the results from the development experiments, final

The statistics presented for each of the boundary detection algbMIT experiments, done on the cdestset, used Viterbi bound-
rithms show that they are generally reliable. However, they ar@fies. FOrIMIT, an improvement over the baseline acoustic seg-
not perfect. In particular, they do occasionally insert a boundargentation in terms of error rate, number of segments, and com-
where a boundary does not exist. When this occursNHeest ~ putation was attained using soft Viterbi boundaries. In addition,
algorithm running between the boundaries cannot hypothesi¥¢hen the recognizer was allowed to run without any computa-
actual segments that cross the boundary. tional constraints, a further error rate reduction was achieved by
simply increasing the size of the segment-graph. This result is
To counter this problem, soft boundaries were introduced. Fighown in Table 2.
ure 3 illustrates this concept. In contrast to Figure 1, where the

4.3. Recovery From Errors

N-best algorithm runs between every neighboring hard bound- Error Rate (%)| Segments/Seconf
ary, theN-best algorithm runs betweeavery othersoft bound- Baseline 29.1 87.2
ary. This allows theV-best algorithm to recover from mistakes | Real-time 28.4 56.6
in the boundary detection algorithm by hypothesizing segmentsSlower than real-timg 28.1 61.3

that span parts of two blocks. Unfortunately, this benefit comes
ata cost. An algorithm using soft boundaries requires more com- - .
putation than one using hard boundaries because some sectiorTsable 2: Final TIMIT recognition results on the cotestset.
of the speech signal are processed twice. In addition, an algo-

rithm based on soft boundaries has a higher latency because {82! JUPITER experiments, done on thestset, used acous-
output lags the latest input data by at least one block. tic Igoundarle_s. FonuplTEF_g the new segmentation algorithm
achieved an improvement in terms of error rate and number of
Experiments In this experiment, the performance differencesegments using acoustic soft boundaries. However, the algo-
between soft and hard boundaries was examined. Again, thighm at that operating point required significantly more compu-
boundaries were evaluated on segment-based recognition pition than the baseline. To further reduce computation, the full
formance and computational requirements. TheiT devset set of phonetic labels used in the segmentation algorithm were
results are shown in Figure 4. Recognition performance in ternollapsed into a set of broad-classes. A broad class size of 20
of number of segments per second versus error rate, is plotted was able to achieve an improvement in word error rate and num-
the left, and computation performance, shown as the number bér of segments at a much more reasonable level of computation.



Table 3 summarizes thiestset results fooUPITER In the table, pronunciation network mismatch. For phonetic recognition, the
the real-time result used the set of broad-class models, and thenunciation network used in probabilistic segmentation and in
slower than real-time result used the full set of models. the subsequent segment-based search is the same. As is typical
in phonetic recognition, this network allows any phone to follow

Error Rate (%)| Segments/Second  any other phone. FarurITER the pronunciation network used

Baseline 10.6 99.7 in probabilistic segmentation allows any phone to follow any

Real-time 10.5 65.2 other phone, but the network used in the subsequent segment-
Slower than real-time 10.0 76.3 based search contains tight word-level phonetic constraints.

This paper concentrated on the tradeoff between recognition per-

Table 3: Final JuPITERrecognition results on thiestset. formance and computation, without regard to memory require-
ments. However, memory can affect the speed of execution as
6. DISCUSSION well if the memory requirements are so enormous that time spent

swapping memory dominates over time spent computing. This
In this paper, various modifications to the probabilistic segmerzh€nomenon is seen at very latyein this paper.

tation_ algorithm presented_ in [2] were _explo_red_, with the goal Of:inally, a word graph search which directly computes a graph
creating an algorithm that is fast, runs in a pipeline, and results 0uld replace theV-best computation. This should eliminate

competitive recognition error rate. Computational savings Were, yundant computation used to expand previously seen segmen-
attained by using acoustic landmarks located at irregular inte{é

) .. tations in theN-best search [7].
vals rather than regularly spaced frames. A left-to-right pipeline [7]
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