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ABSTRACT range of speakers (we had no children in our training data for

) ] ] ) ~example, and had mainly trained on native speakers without re-
This paper describes our experiences with developing @onal accents), speaking style (spontaneous speech vs. read

telephone-based speech recognizer as part of a conversatiogighech), language (both for within-domain queries, and out-of-
system in the weather information domain. This system has beg@main queries), and other artifacts such as non-speech sounds

used to collect spontaneous speech data which has proven togy clipped speech due to the user interface (we do not currently
extremely valuable for research in a number of different areagyow for barge-in).

After describing the corpus we have collected, we describe the
development of the recognizer vocabulary, pronunciations, las we have collected more data we have been able to better
guage and acoustic models for this system, and report on the comratch the users’ vocabulary, and build more robust acoustic and
rent performance of the recognizer under several different cofanguage models. The result is that we have steadily reduced
ditions. word and sentence error rates, to the point of cutting the initial
error rates by over two thirds. In this paper, we describe the
1. INTRODUCTION methods we have used to develop this recognizer, and report on
the lessons we have learned in moving from a laboratory envi-
Over the past year and a half, we have developed a telephongy nent to dealing with real data collected from real users. Our

based, weather information system calletPITER[11], which oy harience has shown us clearly that while there is no data like
is available via a toll-free number for users to query a relatlonar{10re data. there is also no data likal data!

database of current weather conditions using natural, conversa-
tional speech Using information obtained from several differ- 2. CORPUS CHARACTERISTICS
ent internet sitesjuPITERcan provide weather forecasts for ap-
proximately 500 cities around the world for three to five daysp 1. Data Collection
and can answer questions about a wide range of weather proper-
ties such temperature, wind speed, humidity, precipitation, surseveral different methods have been employed to gather data for
rise etc., as well as weather advisory information. the JuPITERwWeather information system. Beginning in Febru-

. ary and March 1997, we created an initial corpus of approxi-
The JuPITERSystem makes use of OBALAXY conversational ately 3,500 read utterances collected from a variety of local
system architecture which incorporates speech recognition, 1agsjephone handsets and recording environments, augmented with
guage understanding, discourse and dialog modelling, and lagger 1,000 utterances collected in a wizard environment [11].
guage generation [9]. WPITER has been particularly useful for These data were used to create an initial version of a conversa-
our research on displayless interaction, information on demangl, system which users could call via a toll-free number and
and robust spontaneous speech recognition and understandiggy for weather information. The benefit of this setup is that
For example, since we attempt to fully understand all querigs proyides us with a continuous source of data from users in-
(i.e., not spot words), and do not constrain the user at any pOiplrested in obtaining information. Currently, we average over
in the dialog, it is crucial to have a high accuracy speech recyg cais per day, and have recorded and orthographically tran-
ognizer that covers, as much as possible, the full range of usgtineq over 59,000 utterances from over 10,560 callers, all with-
queries. This paper describes our work in developing a robugf; idely advertising the availability of the system. On average,

recognizer in this domain. each call contains 5.6 utterances, and each utterance has an av-
When the system was first deployed in late April 1997, the ef/@9€ of 5.2 words. The data are continually orthographically
ror rates of our recoghizer initially more than tripled our labora{ranscribed (seeded with the system hypothesis), and marked for
tory baselines, due in part to the mismatch between the labor@2Vious non-speech sounds, spontaneous speech artifacts, and
tory training and actual testing conditions. The real data had $Peaker type (male, female, child) [8].

much larger variation in environment and channel conditions (of .
ten with very poor signal conditions), as well as a much Wide?'z' Data Analysis

1This research was supported by DARPA under contract N66001—96—C—852§,peé.iker Charagterlstlcs A breakdown of the llve. data shows
monitored through Naval Command, Control and Ocean Surveillance Center. th?‘t_JUSt over 7_0 % of users are male speakers,_wnh females com-
2In the U.S. and Canada: 888 573-8255 (http://www.sls.lcs.mit.edu/jupiter) prising approximately 21% of the data, and children the remain-



der. A portion of the data was from non-native speakers, al- Word Count | Example Usage
though the system performs adequately on speakers whose di- | N (letter) 10 | BAN G O R Bangor
alect or accent does not differ too much from general American creek 9 | Oak Creek, Dayes Creek
English. Callers with strong accents constituted approximately Los 7 | Los Los Angeles California
7% of the calls and 14% of the data. A very small fraction (0.1%) white 7 | white Christmas, white housg
of the utterances included talkers speaking in a foreign language | mother 6 | I'm going to visit my mother
(e.g., Spanish, French, German, or Chinese). news 6 | whatis the news of the day

. ) . ) ) away 5 | go away, get away from me
Signal Quality The signal quality of the data varied substan- stock 5 | I need a good stock tip

tially depending on the handset, line conditions, and background
noise. Itis clear that speaker phones were used in approximately
5% of the calls due to the presence of multiple talkers in an ut-

terance. Less than 0.5% of the data was estimated to be from

Table 2: Frequent OOV words in theurPITERdOmMain.

cellular or car-phones. canyou | whenis nevermind
. Lo A wh lear
Non-Speech SoundOver 11% of the data contained signif- do-you atabout| clearup
. - . - excuseme | whatare heatwave
icant noises. About half of this noise was due to cross-talk : .
. give_me whatwill pollencount

from other speakers, while the other half was due to non-speech :

. . i . going.to how_about | warm.up
noises. The most common identifiable non-speech noise was . . -

you.are i_would wind_chill

caused by the user hanging up the phone at the end of a record-
ing (e.g., after saying good bye). Other distinguishable sources

of noise included (in descending order of occurrence) televisiorgable 3: Examples of multi-word units in theupITERdomain.
music, phone rings, touch tones, etc.

Spontaneous Speech Effect3here were a number of sponta-
neous speech effects present in the recorded data. Over 6% of
data included filled pauses (uh, um, etc.) which were explicithsince the recognizer makes use of a bigram grammar in the for-
modeled as words in the recognizer, since they had consistegérd Viterbi pass, several multi-word units were incorporated
pronunciations, and occurred in predictable places in utterancesto the vocabulary to provide for greater long-distance con-
Utterances contained partial words in another 6% of the data, &ltraint and, in some cases, to allow for specific pronunciation
though approximately two thirds of these were due to clippingnodelling. This would allow for explicit modelling of word se-

at the beginning or end of an utterance. The remaining artifactfuences such as “going to” or “give me” to be pronounced as
were contained in less than 2% of the data and included phegonna” or “gimme” respectively. Common contractions such as
nomenon such as (in descending order of occurrence) laughteghat's” were represented as multi-word units (e.g., “wisi)

throat clearing, mumbling, shouting, coughing, breathing, sighto reduce language model complexity, and because these words
ing, sneezing, etc. were often a source of transcription error anyway. Additional
multi-word candidates were identified using a mutual informa-
tion criterion which looked for word sequences which were

The vocabulary used by thespiTERSystem has evolved as pe- Ilke_zly to oceur together. Table 3 shows examples of multi-word
U{IIIS found in the currertuPITERVOCabulary.

riodic analyses are made of the growing corpus. The curren
vocabulary contains 1893 words including 638 cities and 166 4. PHONOLOGICAL MODELING
countries. Table 1 shows a breakdown of the various types of ’

words in the current vocabulary. Note that nearly half of the vop, the currentsupITER recognizer, words are initially repre-

cabulary contains geography related words. sented as sequences of phonetic units augmented with stress and
syllabification information. The initial baseform pronunciations

ﬁ%<eample usages of the word.

3. VOCABULARY

Type | Size | Examples are drawn from the LDGRONLEX dictionary. The baseforms
geography| 910 | Boston, Alberta, France, Africa are represented using 41 different phonetic units with three pos-
basic| 769 | I, what, January, tomorrow sible levels of stress for each vowel. The baseforms have also
weather| 214 | temperature, snow, sunny been automatically syllabified using a basic set of syllabifica-

tion rules. After drawing the pronunciations for thePITER
vocabulary from theeRONLEX dictionary, all baseform pronun-
ciations were then verified by hand. Vocabulary words missing
. _from the dictionary were hand coded. Alternate pronunciations
The design of the geography vocabulary was based on the citigs, expiicitly provided for some words. In addition to the stan-
for which we were abl_e_ to provide weather |nf_ormat|on, as wely 4 pronunciations for single words providedriONLEX, the

as commonly asked cities. Other words were incorporated basggseform file was also augmented with common multi-word se-

on frequency of usage and whether or not the word could ences which are often reduced, such as “gonna’”, “wanna”, etc.
used in a query which the natural language component could

understand. The 1893 words had an out-of-vocabulary (OO\A series of phonological rules were applied to the phonetic base-
rate of 2.0% on a 2506 utterance test set. Table 2 shows soffie@ms to expand each word into a graph of alternate pronun-
of the most frequently occurring OOV words along with someciations. These rules account for many different phonological

Table 1: Categorical breakdown of thespITERVOCabulary.



phenomena such as place assimilation, gemination, epenthetic raining snowing | humidity temperature
silence insertion, alveolar stop flapping, and schwa deletion. cold hotwarm | advisories warnings
These phonological rules utilize stress, syllabification, and pho- humid windy conditions forecast report
netic context information when proposing alternate pronuncia- extended general

tions. We have made extensive modification to these rules, based

on our examination of theurITERdata. . .
Table 4: Example word classes used in theerITERdomain.

The final pronunciation network does not represent the words
using the original 41 phonetic units utilized RRONLEX. In-

stead, a set of 105 different units were used which includg 2506 utterance set the word-class bigram and trigram had per-
sub-phonetic, supra-phonetic and non-phonetic units in add- 9 9 P

tion to standard phonetic units. For example, the reco }:Z)r(]'tt'ﬁ: ?gslpségtm%rld%ilg;rfnswp:nc(;“t/%yr.a-lr-:EZ?p?éiitsiggr:)tLylg)ger
i ithin-syllabl I- i I ) i '
nizer treats most within-syllable vowel-semivowel sequences d 18.8. Note that the class bigram also improved the speed

and some semivowel-vowel sequences as single units in or the recognizer as it had 22% fewer connections to consider
to better model the highly correlated dynamic characteristics o% 9 0

these sequences. Thus, the phonetic sequence [ow] followed L)’/r'ng the search.

[r] is represented as a single segmental unit [or]. The recognizer

also incorporates various non-phonetic units to account for non- 6. ACOUSTIC MODELLING

linguistic speech transitions and speech artifacts, silences, and

non-speech noise. The 105 units also retain two levels of stre§be JUPITERSystem performs recognition using the segment-

to augment each vowel unit. An example pronunciation graphasedsummIT recognizer which can incorporate both segment-

for the word “reports” is shown in Figure 1. and landmark-based acoustic models [3]. The nature of the

acoustic models has varied over the course of system develop-
ax ment, depending in large part on the amount of available training
oo tra el g P g0 gl g oS o o data. The currentupITERCoNfiguration makes use of context-

dependent landmark-based diphone models which require the

training of bothtransition andinternal diphone models. Inter-

nal diphones model the characteristics of landmarks occurring

within the boundaries of a hypothesized phonetic segment, while

transition diphones model the characteristics of landmarks oc-

) o curring at the boundary of two hypothesized phonetic segments.
The arcs in the pronunciation graph can further be augmented

with transition weights which give preference to more likely pro-Given the 105 phonetic units used in therITERsystem, and the
nunciations and penalize less likely pronunciations.JesnTER  constraints of the full pronunciation graph, there were 4,822 pos-
these weights were set using an error correcting algorithm on dgible diphone transition models and 105 internal models needed.
velopment data [10]. This algorithm adjusted the arc weights iMVe have explored two different methods of modelling transi-
an iterative fashion in order to reduce the error rate of the recogjons. The first method trained models for frequently occurring

iy tcl

Figure 1: Pronunciation graph for the word “reports.”

nizer on development data. transitions, and used one “catch-all” model for remaining transi-
tions. This method worked well, and was simple to train. We
5. LANGUAGE MODELLING currently use a reduced set of 782 equivalence classes which

) . ~were determined manually to insure that an adequate amount of
A class bigram language model was used in the forward Viterl,ining existed for each class and that the elements of each class

search, while a class trigram model was used in the backwardgpipite contextual similarity. This method performs slightly
A~ search to produce the 10-best outputs for the natural languaggiter than the “catch-all” method.

component. A set of nearly 200 classes were used to improve the

robustness of the bigram. The majority of the classes involveldor each landmark, 14 MFCC averages were computed for 8
grouping cities by state or country (foreign), in order to encourdifferent regions surrounding the landmark, creating 112 dif-
age agreement between city and state. In cases where a city terent features. This initial feature set was then reduced from
curred in multiple states or countries, separate entries were addetR features to 50 features using principal component analysis.
to the lexicon (e.g., Springfield, lllinois vs. Springfield, Mas-The acoustic models for each class modeled the 50 dimensional
sachusetts). Artificial sentences were created in order to provifieature vectors using diagonal Gaussian mixture models. Each
complete coverage of all of the cities in the vocabulary. Othemixture model consisted of a variable number of mixture com-
classes were created semi-automatically using a relative entropgnents, dependent on the number of available training vectors
metric to find words which shared similar conditional probabilityfor that class, with a maximum of 50 mixture components.

profiles. Table 4 shows examples of word classes. . . )
The diphone models were trained on a subset of data which ex-

Since filled pauses (e.g., uh, um) occurred both frequently ardudes utterances with out-of-vocabulary words, clipped speech,
predictably (e.g., start of sentence), they were incorporated egross-talk, and various types of noise. The training data also ex-
plicitly into the vocabulary, and modelled by the bigram and tri-cludes all speech from speakers deemed to have a strong foreign
gram. Original orthographies were modified for training andaccent. The full set of within-domain training utterances used for
testing purposes by removing non-speech and clipped woatoustic modelling consisted of 20,064 utterances, which was
markers. When trained on a 26,000 utterance set, and tested @%b of the available data at the time.



7. EXPERIMENTS There remain a considerable number of ongoing areas of re-
search we are presently pursuing, which should help improve
Over the course of the past year thepITERrecognizer has had performance. Recent developments in probabilistic segmenta-
a steady improvement in its performance; this has been a rgon [6], near-miss modelling [1], heterogeneous classifiers [4],
sult of both an increase in training data and improvements tgng tighter integration of linguistic knowledge [2], have shown
the system’s modeling techniques. The test data consists of SfHprovements in ousuPITERbaseline, although they have not
of calls randomly selected over our data collection period. Th9et been propagated to the data collection system. We have also
current test set consists of 2506 utterances, of which 1806 wek@en able to significantly speed up the system (which is con-
considered to be “in domain” as they were covered by the Vastrained to near real-time performance) using a more flexible

cabulary, were free of partial words, crosstalk, etc. Of thesgnjte-state transducer representation under active development.
sentences, 1290 were from male speakers, 274 from females,

and 242 from children. Table 5 shows the performance of th€he system to date has used a pooled speaker model for all
JUPITERrecognizer on this test set using word error rate (WER§coustic modelling. It should be possible to achieve gains
and sentence error rate (SER) as the evaluation metrics. As diwough speaker normalization, short-term speaker adaptation,
be seenin the table, the system tends to perform reasonably wratd better adaptation to the channel conditions of individual
it encounters queries spoken by adults without a strong acceptione calls. Adaptation may also be useful to help improve per-
that are covered by the domain, and that do not contain spoférmance on non-native speakers. Since a phone call might have
taneous, or non-speech artifacts. Females had 50% more wavdiltiple speakers, we are exploring within-utterance consistency
errors than males, while children had 300% more word errof@chniques which have given us gains elsewhere [5].

h les. This i I flecti f the lack of traini . .
than males s is probably a reflection of the lack o tralnlngwe data collection efforts have produced a gold-mine of sponta-

material for females and children. The system has considera ; -
trouble (64.5% WER) with “out of domain” utterances contain.N€OUS speech effects which are often a source of both recognition

ing out-of-vocabulary words, partial words, crosstalk, or othef’Ind understanding errors. For example, partial words typically

disrupting effects. This rate is artificially high, however, due tg-ause problems for the speech recognizer. Another source of

the nature of the alignment procedure with reference orthogré?t(i:Ogrr:'t'ton Srrrorcf,irl]sﬂc]) ut;of-vgcla ?ulgrrr)]/ worids, wh;::k:/are ofte(;]
phies (e.g., partial wordslwayscause an error for example, due C'ies hotcovere € vocabulary. These ISSUes have caused us

to the nature of our mark-up scheme). to begln_work in confidence scoring, which was an area we had

not previously addressed [7]. Finally, we plan to explore the use
Table 5 also shows the performance on speakers judged to h&@feglynamic vocabulary and language models, which may help to
strong foreign accents, who were not included in the standaflleviate some of the unknown city problems.

test set. These data consisted of 3,225 in-domain utterances, nq( .
%F nowledgments The JuPITERdata collection effort was co-

had an error rate more than double the baseline in-domain er srdinated by Joe Polifroni, and heroically transcribed by Sally
rate. Finally, we also evaluated the recognizer on “expert” use X . ! -
4 9 b fee. Jon Yi syllabified the LD@RONLEXdictionary.

(i.e., mainly staff in our group) who have considerable experi-
ence using thauPITERSystem, but were not used for training. 9. REFERENCES
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