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ABSTRACT

We present a new language model that includes some of the
most promising techniques for overcoming linguistic
inadequacy, - including POS tagging [3] and refining [4],
hierarchical, locally conditioned grammars [5], parallel
modelling of acoustic and linguistic domains [6] – and some of
our own: language modelling as language parsing, and a better
integration of the whole process with the acoustic model
resulting in a richer educt from the language modelling
process.

We are building this model for a translation into Spanish of the
DARPA RM task, maintaining the same 1k words vocabulary
and some 1000 sentences.

1.� INTRODUCTION

For the purpose of traditional ASR, a ‘language model’ is just
the expression of collocation constraints in terms of the
language structure, but in our opinion it must account for the
expression of subclassing and structural constraints as well.
The result of the language model, a candidate sign or
hypothesis, should not only be a sequence of units but a whole
linguistic analysis.

However, although highly unsatisfactory from a linguistic
point of view, the n-gram model has challenged all attempts to
improve on its linguistic modelling capabilities [1], possibly
with the exception of decision trees [2].

Our belief is that one has to complicate the language structure
being modelled to improve the quality of the language model.
This new, more complex structure should, however, profit by
the well-known advantages of less structured models such as n-
grams that capture well constraint locality.

We are building this model for a translation into Spanish of the
DARPA RM task, maintaining the same 1k words vocabulary
and some 1000 sentences. The reason why we are using such a
reduced task is that the data needed for this model is a very
costly treebank in the sense that the analysis have to be made
by hand and the POS tags must be carefully designed to
comply with the ordering constraints to ensure the correct
calculation of lower level signs.

In this paper we first propose a language structure and modify
accordingly the problem of language modelling; then we
propose a probability decomposition for the problem and
sketch future work.

2.� THE MODIFIED PROBLEM

1.� The language structure

Linguistic entities – meanings, significants - show a tendency
to be related to units of the same complexity level – either
structural or functional -, and the sets of entitities thus related
can be considered a hierarchy of levels, a level being a set of
units of similar complexity or functionality. For the purpose of
the application at hand we only distinguish the following
lexical (semantic) levels: lexeme, phrase, clause and sentence
in ascending order of complexity; accordingly, we only
distinguish the following levels of “phonetic” substance:
phonemes, words, and sequences of words. It is important to
note that any meaning unit in a semantic level may have a
related significant unit in any significant level, and vice-versa;
in particular “words” will not solely be linked to “lexemes”, as
in most language models.

On one hand, linguistic entities show two behaviours: a
paradigmatical behaviour when opposed to units that can
fulfill the same syntactic behaviour – essentially a class
membership – and a syntagmatical, or syntactic behaviour
when collocated with units of any paradigmatical behaviour –
essentially a sintactic function-. The recursive nature of these
two behaviours in the level hierarchy is what makes the
definition of adequate classes and grammars so challenging a
task.

While doing any linguistic processing a unit shows its
paradigmatical behaviour in the paradigmatical phase of the
processing; similarly the syntagmatical behaviour is only
manifest in the syntagmatical phase. Any linguistic processing
– including parsing or generation must alternate between these
two phases.

On the other hand, linguistic components cast themselves into:

• Lexicalized (pre-built) hypotheses retrieved
from a database of signs, 

is∈iL and 
iς∈iΛ or

• Hypotheses built on-the-fly according to a
grammar, 

is∈ℑ( iΣ) and 
iς∈ℑ( iS)

where ℑ( i-1Σ) and ℑ( i-1S) denote, respectively, the set of
paradigmatical components built out syntagmatical
components one level less complex, and the set of
syntagmatical components obtained from paradigmatical
components in this level. This recursive definition ends at
either lowest level lexeme – for meanings -, and – phoneme,
for significants.

Thus in fact the set of paradigmatical components for each
level i, 

iS, is built out of two distinct, disjoint subsets:



�(1)�
iS = iL∪ℑ( i-1Σ)   ∅ = iL∩ℑ( i-1Σ)

and the set of syntagmatical components for each level i, 
iΣ, is

built out of two other disjoint subsets:

�(2)�
iΣ = iΛ∪ℑ( iS)   ∅ = iΛ∩ℑ( iS)

Furthermore, we consider all signs to be in fact products of two
component domains: the acoustic and the meaning
components, i.e.:

�(3)�
is = (is.p,is.m)

where “.p” and “.m” denote each the acoustic part and the
meaning part of each candidate.

To describe the process of obtaining such analyses let us define
the following objects whose exact meaning will be made clear
along this paper (note that all paradigmatical variables have
latin face and all syntagmatical variables have greek face):

• 
M

L
F  restriction state of candidates in the

paradigmatical phase in level i at step j;

• 
N

Lκ  the construction state of a hypothesis in
the syntagmatical phase in level i

• V
L

 a candidate for recognition or modelling in
level i – a paradigmatical sign.

• ςL , a unit to continue exploring a grammar in
level i – a syntagmatical sign.

• 
M

L
[ the paradigmatical exploration state of

observations for level i at restriction step j.

• 
N

L χ , the syntagmatical exploration state of
observations for level i at construction step k.

2.� The paradigmatical constraint order

We model (lexical) paradigmatical meanings with refined POS
tags in the style of [4], although our tags are handcoded. By
allowing refinement we are implicitly allowing an order for
constraints. To further understand it, let (_.c: S→C) denote a
meaning (phonetic) projection of the signs onto constraints,
and

�(4)� is(ic
j
)={ is∈ iS| is.c≥ ic

j
}

be the subset associated to constraint icj∈
iC  in 

iS, and

�(5)� is≡ic
j
={ is∈ iS| is.c= ic

j
}

�(6)� is>ic
j
={ is∈ iS| is.c> ic

j
}

be the subsets of the sign set 
iS that include all signs whose

meaning (phonetic) part is respectively equal (5) or strictly less
(6) than a particular meaning (phonetic) constraint; clearly
they define a partition on (4). Let further 

ic
0
 be the least of

constraints, so that 
is(ic

0
) = iS.

We can obtain more restricted constraints by means of an
operator that restricts the constraints in the sense that the

associated set is smaller. Clearly, the set of constraints that
dominate a given one form a covering of the subset of strictly
less constrained signs:

�(7)� is> ic
j
 =∑ ick ≥ icj

 iS(ic
k
)

But if we further allow the order to be arborescent as that of the
strings in an alphabet, the covering is a partition as well.We
also claim that paradigmatical acoustical constraints can be
modelled in this way.

3.� The exploration orders

On our model exploration of hypothesis is integrated with
hypothesis creation (thus we reduce recognition to integrated
exploration and hypothesis construction).

Let us suppose we have an order on paradigmatical exploration
states in which ix ≥ ix0 that is to say, the starting exploration
state is the least one from which all others stem. Then, each
candidate hypothesis will only be valid in case the exploration
of (acoustic) observations reaches a valid state 

ix from some
given starting state ixo common to all hypotheses, so that:

The syntagmatical exploration order is much more familiar: let
iχ denote a segmentation of the observation; then iχ

j
≥ iχ

k
 is a

more restricted segmentation if χ
j
 has at least all the

segmentation states of 
iχ

k
 and possibly more.

4.� The modified language modelling
problem

The modified language model must therefore provide
probabilities and structure for the sentences in the task. It
should start therefore analyzing at a top level from which to
recover all the rest:

�(8)� p(tops|topo) = ∑ 
topx0

p(topx
0
|topo,topc

0
) ⋅

⋅∑ 
topx ≥ topx0

p(topxtops| topx
0
,topc

0
)

But if we consider a common origin for all hypothesis, as usual
only one term should be used to compare hypotheses:

�(9)� p(tops|topo)∝ p(topx,tops| topx
0
,topc

0
)

3.� INTEGRATED EXPLORATION AND
CONSTRUCTION

5.� Solving the paradigmatical problem

We start with a version of (9) generalized in the level and the
constraint to be solved; as stated by (5) and (6), only two types
of solutions are valid with respect to the constraint:

�(10)� p(ix,is| ix
0
,ic

j
)=

p(ix,is≡ ic
j
 | ix

0
,ic

j
)+ p(ix,is> ic

j
 | ix

0
,ic

j
)

First, paradigmatical units can only be further restricted
provided there exist more restricted elements 

ic
k
 ≥ ic

j
;



therefore, if we design the order such that these subrestrictions
partition the hypotheses as in (7) we have a base case for
recursion in the paradigmatical phase:

�(11)� p(ix,is> ic
j
 | ix

0
,ic

j
)=∑ 

ick ≥ icj

 p(ix,is| ix
0
,ic

k
)

These conditions are met if the restrictions form a branching or
tree partial order whose root is 

ic
O
. The tagset of our treebank

was handcoded to comply with this tree structure, based on
standard linguistic theory for Spanish.

Second, each of the two sets may have a non-void intersection
with the sets of lexicalized or built units for this level as stated
in (1) the net effect of which is to further partition:

�(12)� p(ix,is≡ ic
j
| ix

0
,ic

j
)=

p(ix, is≡ ic
,j
 , is∈iL | ix

0
,ic

j
) +

p(ix, is≡ ic
j
 , is∈ℑ( iΣ) | ix

0
,ic

j
)

Third, lexicalized hypotheses for a particular restriction only
have to be evaluated for the probability of occurrence of the
product event (

is.p≡ ic
j
.p, is.m≡ ic

j
.m) for each hypothesis:

�(13)� p(ix,is≡ ic
,j
 , is∈iL | ix

0
,ic

j
)=

p(ix, is.p≡ ic
j
.p, is.m≡ ic

j
.m, is∈iL | ix

0
,ic

j
)≈

p( is.p≡ ic
j
.p, is.m≡ ic

j
.m, is∈iL | ic

j
)⋅

⋅p(ix| is.p≡ ic
j
.p, is.m≡ ic

j
.m, is∈iL , ix

0
,ic

j
)

These instances of signs and their probabilities are learnt from
the treebank, and no attempt is done to smooth them.

Finally, if we accept that ℑ( iΣ) is a language built out of the
symbols in 

 iΣ, we may then comprehend the problem posed by
as that of finding the strings belonging to that language to be
further specified below:

�(14)� p(ix, is≡ ic
j
 , is∈ℑ( iΣ) | ix

0
,ic

j
) ≈

 (15) p(ix, is | ix0,
icj,

 is∈ℑ( iΣ))⋅p( is∈ℑ( iΣ) | icj)

where p( is∈ℑ( iΣ) | ic
j
)=1- p( is∈iL | ic

j
).

The net effect of first partitioning in the constraints, then in the
lexicalized vs. built distinction is to assign more precise
probabilites to each, and to control overgeneration in the
building mechanism by partitioning the examples from which
the system has to learn the subgrammars.

6.� Subgoaling on the sintagmatical problem

Let us define a string generation mechanism to describe the
language of valid built signs for constraint ic

j
, for example a

weighted finite state machine [8]:

�(16)� i-1A(ic
j
)= <P, i-1Κ, i-1Σ,i-1κ

0(j)
, i-1F

j
, i-1δ

0(j)
>

where P is the probability weight semiring, 
i-1Κ the set of

building states from an initial state 
i-1κ

0(j)
,, i-1Σ the alphabet to

build sequences from, 
i-1F

j
 a weighted final function for those

states of that have built a valid sequence and 
i-1δ

0(j
 a transition

function from states and components to signs, all conditioned
on the constraint 

ic
j
. Such automaton can easily be inferred

from the analyses of the treebank as a Finite Tree Acceptor.
Thus:

�(17)� p(ix, is | ix0,
icj,

 is∈ℑ( iΣ))= p(ix, is |ix0,A(icj,
 ))

For each valid hypothesis we have to estimate two
probabilities: the probability of constructing a sequence in the
automaton or subgrammar, a cumbersome one, and the
probability that once obtained the sequence, it represents a
valid unit in the upper level:

�(18)� p(i+1x, i+1s |i+1x
0
,iA(i+1c

j

 ))=

p(iχ
0
, iκ

0
 |i+1x

0
,iA(ic

j
))⋅

⋅p(iχn

1
,iκn

1
,iςn

1
| iχ

0
, iκ

0
, i+1x

0
,iA(ic

j
,))⋅

⋅p(i+1x, i+1s| iχn

1
,iκn

0
, iςn

0
, i+1x

0
,iA(ic

j
,))

where :p(i+1x, i+1s|iχn

0
,iκn

0
, iςn

1

i+1x
0
,iA(ic

j
,)) is the probability

that the built unit (
iχn

1,
iκn

1,
 iςn

1) is really valid and give birth to
the signs we are interested in:

�(19)� p(i+1x, i+1s| iχ
n
,iκ

n
, iςn

1
, i+1x

0
,iA(ic

j
, ))≈

p(i+1x| iχ
n
, i+1s, i+1x

0
)⋅ iF

j
(iκ

n
, iςn

1
|iA(ic

j
,))

p(iχ
0
, iκ

0
 |i+1x

0
,iA(ic

j
)) is the final case for the recursion: the

probability of starting exploring the automaton. As there is
only one starting state for each automaton, and a single
observation stream, this probability equals one in our model.

p(iχn

1
,iκn

1
,iςn

1
| iχ

0
, iκ

0
, i+1x

0
,iA(ic

j
,)) is the probability of

reaching a particular construction and exploration state with a
sequence of units from these initial states. We call calculating
these states the syntagmatical problem.

7.� Solving the syntagmatical problem

We formulate a recursion to solve the syntagmatical problem
ending in a particular case as:

�(20)�  p(iχn

1
,iκn

1
,iςn

1
| iχ

0
, iκ

0
, i+1x

0
,iA(ic

j
))=

p(iχ
n
,iκ

n
,iς

n
| iχn-1

1
,iκn-1

1
,iςn-1

1

i+1x
0
,iA(ic

j
))⋅

⋅p(iχn-1

1
,iκn-1

1
,iςn-1

1
| iχ

0
, iκ

0
, i+1x

0
,iA(ic

j
))

where p(iχn-1

1
,iκn-1

1
,iςn-1

1
| iχ

0
, iκ

0
, i+1x

0
,iA(ic

j
)) is the base

recursion case and p(iχn,
iκn,

iςn|
 iχn-1

1
,iκn-1

1
,iςn-1

1

i+1x
0
,iA(ic

j
)) is

the probability of reaching states (
iχn,

iκn) with 
iςn after

reaching state sequences (
iχn-1

1
,iκn-1

1
). As in most modelling we

assume a Markov behaviour of these transitions to obtain:

�(21)� p(iχn,
iκn,

iςn|
 iχn-1

1
,iκn-1

1
,iςn-1

1
,i+1x

0
,iA(ic

j
)),≈

p(iκ
n
| iκ

n-1
, iς

n
, iA(ic

j
,))



p(iχ
n
,iς

n
| iχ

n-1
,iκ

n-1
,i+1x

0
,iA(ic

j
,))

where p(iκn,
iςn|

 iκn-1,
iA(ic

j
,)) is the transition function in iA(ic

j
).

8.� Subgoaling on the paradigmatical
problem

In order to reach states 
iχ

n
,iς

n
 a paradigmatical in this level unit

must be obtained and we resort to equation (10) to do so:

�(22)� p(iχ
n
,iς

n
| iχ

n-1
,iκ

n-1
,i+1x

0
,iA(ic

j
,))≈

p(ix
0(n-1)

,ic
0(n-1)

| iχ
n-1

,iκ
n-1

,i+1x
0
,iA(ic

j
,))⋅

p(ix
 n-1

,is
 n-1

| ix
0(n)

,ic
0(n)

)⋅

p(iχ
n
,iς

n
| ix

 n-1
,is

 n-1
)

where p(i
x0(n-1),

i
c0(n-1)|

 iχ
n-1

,iκ
n-1

,i+1x
0
,iA(ic

j
,)) is the probabilitiy

that we can find a sign at a lower level of complexity whose
syntagmatical function is that expected by the automaton.

p(ix
 n-1

,is
 n-1

| ix
0(n)

,ic
0(n)

) is the base case for the start of the
process at equation (10), except that the problem is focused on
the sign to transit from 

iχ
n-1

,iκ
n-1

 to 
iχ

n
,iς

n
 at a lower level of

structural complexity than the initial one.

Finally, p(iχ
n
,iς

n
| ix

 n-1
,is

 n-1
) is the probability that whatever

unit we obtain is suitable for carrying out the transition. We
will suppose that 

ix
 n-1

,is
 n-1 carries enough information to make

this probability equal to 1.

The recursion is mainly sketched in the meaning domain
through the four meaning levels we are using, - sentence,
clause, phrase and word -, but must also proceed in the acoustic
level – word sequences, words and phonemes -. This model is
exactly the same but needs a more cumbersome formulation
for separate delving in each domain.

The whole process terminates in equation (10) because
lexemes and phonemes are primitives for our system and on
reaching those levels no more recursions are spawned.

4.� LANGUAGE MODELLINS AS
PARSING

In view of all this, the construction of the language model must
entail the parsing of the task corpus to build a tree bank of
analyses. In this process, we can use the same framework for
speech recognition as we would for parsing: strings of acoustic
observations (letters) are the phonetic (orthographic)
component evidence from which a full hypothesis (analysis)
should be obtained, the difference  being the quality of the
observations – perfect and partially segmented for the parsing
case and error-bearing and unstructured in the recognition case
– and the comparison functions for phonetic observations and
prototypes proposed by the building process - more flexible for
the recognition case. Thus, recognition is conceived as parsing
inaccurate input.

However, in our integrated model, recognition and language
modelling run parallel because we have accepted that

meanings and significants are not independent domains but the
different faces of the same coin, - as the saying goes -, so
language modelling should in fact be a complex task parsing-
model reestimation process over a model such as our own.

This renders traditional language modelling evaluation
parameters, like perplexity [1], inadequate, or at least
incomplete. Our choice of measure for the time being is
sentence likelihood as obtained after analysis completion, but
this does not take into consideration coverage or complexity of
the task questions as was our initial intention.

5.� FURTHER WORK

In pursuing language modelling as language parsing we aim at
a better integration with searching algorithms: after the model
is evaluated it will be searched with a suitable search algorithm
like that of [7]. After the integration we plan to move onto
automated learning of the model.
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