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ABSTRACT 2. THE MODIFIED PROBLEM

We present a new language model that includes some of the 1. The |anguage structure

most promising techniques for overcoming linguistic

inadequacy, - including POS tagging [3] and refining [4], Linguistic enities — meanings, significants - show a tendency
hierarchical, locally conditioned grammars [5], parallel to be related to units of the same complexity level — either
modelling of acoustic and linguistic domains [6] — and some @ftructural or functional -, and the sets of entitities thus related
our own: language motlimg as language parsing, and a bettecan be considered laerarchy of levels, a level being a set of
integration of the whole process with the acoustic modelnits of similar complexity or functionality. For the purpose of
resulting in a richer educt from the language ntlowe the application at hand we only distinguish the following
process. lexical (semantic) leveldexeme, phrase, clause andsentence

in ascending order of complexity; accordingly, we only

We are building this model for a translation into Spanish of th:%stinguish the following levels of “phonetic’ substance:

DARPA RM task, maintaining the same 1k words vocabularighon words, and sequences of words. It is important to
and some 1000 sentences. note that any meaning unit in a semantic level may have a
related significant unit in any significant level, and vice-versa;
1. INTRODUCTION in particular “words” will not solely be linked to “lexemes”, as

For the purpose of traditional ASR, a ‘language model’ is judf most language models.
the expression of collocation constraints in terms of thén one hand, linguistic €ties show two behaviours: a

language structure, but in our opinion it must account for ”}?axadigmatical behaviour when opposed to units that can
expression of subclassing and structural c_onstrai_nts as W?”Ifill the same syntactic behaviour — essentially a class
The result of the language model, candidate sign or membership — and ayntagmatical, or syntactic behaviour

prot_hegs, ShIOUI_d not only be a sequence of units but a Wholﬁhen collocated with units of any paradigmatical behaviour —
inguistic analysis. essentially a sintactic function-. The recursive nature of these

However, although highly unsatisfactory from a linguistidWO behaviours in the level hierarchy is what makes the
point of view, the n-gram model has challenged all attempts glefinition of adequate classes and grammars so challenging a
improve on its linguistic modiing capabilities [1], possibly t@sk.

with the exception of decision trees [2]. While doing any linguistic processing a unit shows its

Our belief is that one has to complicate the language structut@radigmatical behaviour in thgaradigmatical phase of the
being modelled to improve the quality of thegaage model. Processing; similarly the syntagmatical behaviour is only
This new, more complex structure should, however, profit bjpanifest in thesyntagmatical phase. Any linguistic processing

the well-known advantages of less structured models such asmincluding parsing or generation must alternate between these
grams that capture well constraint locality. two phases.

We are building this model for a translation into Spanish of the" the other hand, linguistic components cast themselves into:
DARPA RM task, maintaining the same 1k words vocgbulary « Lexicalized (pre-built) hypotheses retrieved

and some 100_0 sentences. The reason why we are using such a from a database of sigr'nSﬂL and ¢CUA or

reduced task is that the data needed for this model is a very

costly treebank in the sense that the analysis have to be mades Hypotheses hli on-the-fly according to a

by hand and the POS tags must be carefully designed to  grammar,s[J/{'2) and¢1/('S)

comply with the ordering constraints to ensure the correct i i .
calcSIgtion of lower level gigns. where [{ "'2) and [{ 'S) denote, respectively, the set of
paradigmatical components iliu out syntagmatical

In this paper we first propose a language structure and modidgmponents one level less complex, and the set of

accordingly the problem of language mlblidg; then we syntagmatical components obtained from paradigmatical

propose a probdity decomposition for the problem and components in this level. This recursive difom ends at

sketch future work. either lowest level lexeme — for meanings -, and — phoneme,
for significants.

Thus in fact the set of paradigmatical components for each
leveli,'S, is built out of two distinct, disjoint subsets:



(1 'S= iLﬂg(”Z) [J = iLng(”Z) associated set is smaller. Clearly, the set of constraints that
_ dominate a given one form a covering of the subset of strictly
and the set of syntagmatical components for each level i, 2, is  less constrained signs:

built out of two other disjoint subsets: (7) - 5 is(i )
) ) ) ) ) S>C =) i C
@ 'T=A0X'S O="An'S 172 2 25

Furthermore, we consider all signsto bein fact products of two
component domains. the acoustic and the meaning
components, i.e.:

But if we further allow the order to be arborescent as that of the
strings in an alphabet, the covering is a partition as well. We
also claim that paradigmatical acoustical constraints can be
modelled in this way.
3 's=(sp,sm) .

3. Theexploration orders

where “.p” and “.m” denote each the acoustic part and the ) o _
meaning part of each candidate. On our model exploration of hypothesis is integrated with

hypothesis creation (thus we reduce redtogm to integrated
To describe the process of obtaining such analyses let us deféyloration and hypothesis construction).

the following objects whose exact meaning will be made clear ) ) )
along this paper (note that all paradigmatical variables hak&t Us suppose we have an order on paradigmatical exploration

latin face and all syntagmatical variables have greek face): States in whichx =X, that is to say, the starting exploration
state is the least one from which all others stem. Then, each

. IC]- restriction state of candidates in the candidate hypothesisilivonly be valid in case the exploration
paradigmatical phase in levieht steg; of (acoustic) observations reaches a valid skafeom some
given starting state, common to all hypotheses, so that:

“

. sz the construction state of a hypothesis in

the syntagmatical phase in level The syntagmatical exploration order is much more familiar: let
'X denote a segmentation of the observation; t)(qén'l')(k is a
more restricted segmentation jf' has at least all the
segmentation states 'Q(fk and possibly more.

+ 's a candidate for recognition or modelling in
leveli — a paradigmatical sign.

. iC, a unit to continue exploring a grammar in o ]
leveli — a syntagmatical sign. 4. The modified language modelling

. ixjthe paradigmatical exploration state of problem

observations for levelat restriction step The modified language model must therefore provide
probabilities and structure for the sentences in the task. It
should start therefore analyzing atap level from which to
recover all the rest:

8  P(79™0) = Sne p("x]"0,"c) 11

. i)(k, the syntagmatical exploration state of
observations for levelat construction stek

2. Theparadigmatical constraint order

We model (lexical) paradigmatical meanings with refined POS b iopt o top

tags in the style of [4], although our tags are handcoded. By Q_‘OPX Z‘OPXOD( X "] Xy CD)

allowing refinement we are implicitly allowing an order for

constraints. To further understand it, (etc: S—C) denote a But if we consider a common origin for all hypothesis, as usual
meaning (phonetic) projection of the signs onto constrainteply one term should be used to compare hypotheses:

d
R @ P(7™0) 7 p(™, 8, C)
(@) 's(c)={'s0'S'sc>'c)
be the subset associated to constrajfitC in 'S and

(5) 's¥c={'sJ'Y's.c="c}

i i = i Ui i : >i ‘ . .

(6) S>CJ {st/S'sc CJ} We start with a version of (9) generalized in the level and the
be the subsets of the sign $Btthat include all signs whose constraint to be solved; as stated by (5) and (6), only two types
meaning (phonetic) part is respectively equal (5) or strictly les¥ solutions are valid with respect to the constraint:

(6) than a particular meaning (phonetic) constraint; clearl i
they define a partition on (4). Let furth'eEr0 be the least of ()fl_O) p(x.s] X CJ)_

constraints, so th&('c) = 'S il iy | iy iein |iy |
(¢ p(x'5=C | ,/0)+ p(x's>c | %,'c)
We can obtain more restricted constraints by means of an

operator that restricts the constraints in the sense that thiSt Paradigmatical units can only be further restricted
provided there exist more restricted elemergs = q

3. INTEGRATED EXPLORATION AND
CONSTRUCTION

5. Solving the paradigmatical problem



therefore, if we design the order such that these subrestrictions
partition the hypotheses as in (7) we have a base case for
recursion in the paradigmatical phase:

(1) p(x's>G |'%,c)=3 . 2'c p(x,'s| '%,'c,)

These conditions are met if the restrictions form a branching or
tree partial order whose root is ICO. The tagset of our treebank
was handcoded to comply with this tree structure, based on
standard linguistic theory for Spanish.

Second, each of the two sets may have a non-void intersection
with the sets of lexicalized or built units for thislevel as stated
in (1) the net effect of which isto further partition:

iyiaminlly iny—
(12 p(x's=c|','c)=
p(x,'s
i [ i i i i
p(x,'s=¢ , UL 2) | %,c)
Third, lexicalized hypotheses for a particular restriction only
have to be evaluated for the probability of occurrence of the
product event ('S.p=C.p, 'S.M=C.m) for each hypothesis:
(13) p(x
p(x,'sp=c.p, 'sm=c.m,'sL | 'x,'c)=

=c, ,'slL |'x,'c) +

s=c,,'s[L |'x,'c)=

p('sp=c.p, 'sm=c.m,'sCL |'c) T
P(X's.p=c.p, 'sm=c.m,'sL ,'x,,c)

These instances of signs and their probabilities are learnt from
the treebank, and no attempt is done to smooth them.

Finally, if we accept that /{'2) is alanguage built out of the
symbolsin ', we may then comprehend the problem posed by
as that of finding the strings belonging to that language to be
further specified below:

(14) p(x's=c,'s0A'S) |'x,c) =
(15) ¢,'sO0('2))p('s00('2) 'c)
where p(iSUD(iZ) |icj): 1- p(iSUL |IC,)

The net effect of first partitioning in the constraints, then in the
lexicalized vs. built distinction is to assign more precise
probabilites to each, and to control overgeneration in the
building mechanism by partitioning the examples from which
the system has to learn the subgrammars.

p(iX, iS | iXO,i

6. Subgoaling on the sintagmatical problem

Let us define a string generation mechanism to describe the
language of valid built signs for constraint q for example a
weighted finite state machine [8]:

(16) I1A(C) <PI1KI12I1

where P is the probability We|ght semlrlng "K the set of
building states from an initial state' 2 the alphabet to

|1F |15 >

0(])”

build sequences from, FJ aweighted final functlon for those
states of that have built a valid sequence and ' 0. atransition
function from states and components to signs, all conditioned
on the constraint ICJ.. Such automaton can easily be inferred
from the analyses of the treebank as a Finite Tree Acceptor.
Thus:

(17) p(iX,iS|iX0,iCJ,iSUJiZ)): p(iX,iS|iXO,A(iCJ,))

For each valid hypothesis we have to estimate two
probabilities: the probability of constructing a sequence in the
automaton or subgrammar, a cumbersome one, and the
probability that once obtained the sequence, it represents a
valid unit in the upper level:

(18) p("%"'s|"%,/A("c))=
PO K | % ACC))
POX LK X Ky % AlC ) T
BO%s W Ky € %, ACC )

where :p("'x, g |'X"0,'K"O, '¢ I”XO A(C )) is the probability
that the built unit (X", K", '¢,) isreally valid and give hirth to
thesignswe are |nterested in:

(19) p(iﬂ.X’ i+1S| an!iKn! iCUla i+1XD’iA(iCj’ )):
p(i+1X| an’ i+1s, i+1XD) EFj(iKn, icnlliA(iCj!))

P( Xy 'K, 1%, A(C)) is the final case for the recursion: the
probability of starting exploring the automaton. As there is
only one starting state for each automaton, and a single
observation stream, this probability equals one in our model.

P(X' KW' S| Xy 'Ky %0 ACC,)) i the probability of
reaching a particular construction and exploration state with a
sequence of units from these initial states. We call calculating
these states the syntagmatical problem.

7. Solving the syntagmatical problem

We formulate a recursion to solve the syntagmatical problem
ending in aparticular case as:

(20) POX' K ¢ X K %0 ACC))=
POX, K Gl X0 K ¢ % ACe) D

PO K X &, O,MXD Ac))

where p( Y™, K™, '(“ | XO, ; A(C)) is the base

recursion case and p(x, K, ¢ )(1 B '(‘”MXD A(C)) is
the probability of reachmg states ( Xos Kn) with C after

reaching state sequences ( X",,'K™)). Asin most modelling we
assume a Markov behaviour of these transitions to obtain:

1) pOx, K, CIX ™ K™ ¢ % A(S)), =
P& 'K,2'¢, 'ACG,)



POX Gl X Ko %0 ACC,))
where p(K, C| iKn_l,iA(iCj,)) isthetransition functionin iA(i(:j).
8. Subgoaling on the paradigmatical
problem

In order to reach sta[tesi)(n,icn aparadigmatical in thislevel unit
must be obtained and we resort to equation (10) to do so:

(22)  POX Gl X Ko™ % ACC)) =

meanings and significants are not independent domains but the
different faces of the same coin, - as the saying goes -, so
language modkng should in fact be a complex task parsing-
model reestimation process over a model such as our own.

This renders traditional language mbisg evaluation
parameters, like perplexity [1], inadequate, or at least
incomplete. Our choice of measure for the time being is
sentence likelihood as obtained after analysis completion, but
this does not take into consideration coverage or complexity of
the task questions as was our initial intention.

p(ixo(n-l)’iCO(n-l)l an-l’iKn-l’HlXD’iA(iCj’)) U
p(ixn-1’isn-1| iXO(n)’iCO(n))U
p(an’qu an-l’iSn-l)

5. FURTHER WORK

In pursuing language moltieg as language parsing we aim at
a better integration with searching algorithms: after the model
is evaluated it will be searched with a suitable search algorithm

like that of [7]. After the integration we plan to move onto

where P(Xy,p Coml Xosr Kpps X AC,)) is the probabilitiy
that we can find a sign at a lower level of complexity whose
syntagmatical function is that expected by the automaton.

P(X 1S al Xor Co) 1S the base case for the start of the
process at equation (10), except that the problem is focused on
the sign to transit from 'y 'k , to 'x,'C at alower level of
structural complexity than the initial one.

Findly, p(x,'¢| X, 'S ,,) is the probability that whatever
unit we obtain is suitable for carrying out the transition. We
will supposethat X _,,'S , carries enough information to make
this probability equal to 1.

The recursion is mainly sketched in the meaning domain
through the four meaning levels we are using, - sentence,
clause, phrase and word -, but must also proceed in the acoustic
level — word sequences, words and phonemes -. This model is

exactly the same but needs a more cumbersome formulation 4.

for separate delving in each domain.

The whole process terminates in equation (10) because
lexemes and phonemes arénptives for our system and on
reaching those levels no more recursions are spawned.

4. LANGUAGE MODELLINSAS
PARSING

In view of all this, the construction of the language model must
entail the parsing of the task corpus to build a tree bank of
analyses. In this process, we can use the same framework for
speech recogtion as we would for parsing: strings of acoustic
observations (letters) are the phonetic (orthographic)
component evidence from which a full hypothesis (analysis)
should be obtained, the difference being theliguaf the
observations — perfect and partially segmented for the parsing
case and error-bearing and unstructured in the recognition case
— and the comparison functions for phonetic observations and

prototypes proposed by the building process - more flexible for 8

the recognition case. Thus, recognition is conceived as parsing
inaccurate input.

However, in our integrated model, recognition and language
modelling run parallel because we have accepted that

automated learning of the model.
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