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ABSTRACT

a
. _ a2
This paper reports on a large vocabulary speaker indepen- —
by by bs

dent isolated word recognizer targeting 50,000 words. The
system supports a unique fqur-layer sharing structure fOEIGURE 2 : Athree state left-to-right HMM used in

either contlnu_ous HMM or discrete HMM._EvaIuatlon IS SRE for all the phonemes in a particular context.
performed using a dictionary of 5000 US city names, a dic-

tionary of the 5000 English most frequent words, a dicticSuppose there ar8  types of observations,

nary of 50,000 English words, and the 110,000 word CMUdenotes the distribution of statke  and type (or stream) ,
English dictionary. For these dictionaries, recognition  then
accuracy ranges from 90% to 93% for the top 3 results.

b, = sti, i=1.B (1)
|
1. HMM SPEECH RECOGNITION The observations can be handled in two ways to create
ENGINE either a discrete observation HMM (DHMM) or a continu-

ous observation HMM (CHMM).
The speech signal is a one-dimensional waveform ash bability distribti f the di b )
shown in FIGURE 1. The speech signal may be labele@l\/(laMpcrj%fiﬁeldltgs Istribution of the discrete observation

with a sequence of phonemes. A word may correspond to

one or more continuous phonemes. An example of the pho-  Bg; = bgild] = stik[cﬂy q=1.Q (2)
neme labels of the isolated wordeéni' is also shown in
FIGURE 1. is a one-dimension array with each scalt%ri[q] denoting

the probability of observing the vector quantized symipol
_.»—HWW%WWW for states , andb; [ ] denoting the sub-probability dis-
tribution that is a component ibsi[ ] Q inthe equation
denotes the total number gf . The sub-probability distri-
_ butionby;  is introduced for DHMM in order to compress
i':slggteR dE v&o-rdSEi(t?eer%b waveform and phonemes of the e DHMM parameters more accurately and to share the
' structure between DHMM and CHMM more efficiently.
A left-to-right HMM process is used to model the speech
waveform in this Speech Recognition Engine (SRE) aghe probability distribution of the continuous observation
shown in FIGURE 2. This figure displays a simple 3-statélMM is defined as

left-to-right HMM of a phoneme where the context bsi = bsi(o) = bsik(o)

includes the left and the right phone, i.e., the HMM is con- 2

text dependent. This type of HMM is chosen because it Csik O (o-mg) O

offers convenient flexibility for state sharing between the bgj\(0) = —— x exp3-0.5x% — o @
‘Vsi |:| S|k D

first, second, and last state of the HMM, as explained

below. A series of HMMs correspond to a series of phoThe diagonal Gaussian mixture is used to represent the
nemes. The observations are emitted from each state of thbability of the continuous observation vector for state
HMM process. The observation probabilities can be fors. Csik is the weight for mixturek of state and type
mulated as probability distributiobg , whese  refers to &imilarly m;, is the mean for the Gaussian of mixtuce ;
state in a HMM. Each state transition, shown as an arc in;,  is the variance for mixturk

FIGURE 2, is associated with a state transition probability

ag; Which denotes the probability of transitioning usingTo make the terminology convenient for both continuous
the arcj of stats . HMM and discrete HMM, we will call bg; (in



EQUATION 2,3) the mixture-probability distribution /1 — _
(MPDTR), and bsik the sub-probability distribution ‘< - =

(SPDTR). > :‘
statel | _am> o | state2

The novel EQUATION 2 has the same expansion formulg|GURE 5 : Sharing of mixture probability

as EQUATION 3. EQUATION 2 allows us to construct adistributions (MPDTR) between states. Each striped
common four-layer sharing structure for both discrete andurve represents one distribution bg; -

continuous HMM. The interchangeable sharing structure

for CHMM and DHMM make our speech engine differ FIGURE 6 displays the sub-probability distribution shar-

from other systems reported in the literature[1,2,3]. ing. For continuous observation HMMs using Gaussian
functions as SPDTRs, as shown, are shared with each
2. HMM PARAMETER SHARING other. On the other hand, for discrete HMM, FIGURE 6

illustrates the sharing of the SPDTR; [d]
The HMM parameter sharing consists of four layers. The

first layer is the phoneme model sharing. The phoneme

model sharing for the context dependent HMM as used by — - — A
this system is exemplified by the HMM /w-ah+dx/. In this A —
example, the HMM is a triphone, the main phoneme is /ah/ - I —
, Iw/ is the left context phoneme, and /dx/ is the right con- B

text phoneme. In order to redu_ce the memory and 1@, e 6 - Sharing of sub-probability distributions
improve the robustness of the estimated model parametef§ppDTR) among different probability distributions.
some HMMs may share similar portions of the triphones.

The sharing of HMMs is illustrated in FIGURE 3. In the FIGURE 7 shows the overall four layer sharing structure of
results from our preliminary experiments reported in thithe Speech Recognition Engine(SRE). A top-down sharing
paper, we used the available corresponding data for eadbsign is usually performed first, that is, from models to
model during training to help determine the model sharingtates, from states to MPDTRs, from MPDTRSs to
structure. SPDTRs. After the SRE parameters have been trained with

speech data, a bottom up sharing procedure may be per-

b-ah+dx | v-ah+dx e e  w-ah+dx formed, thatis, from SPDTRs to MPDTRs, from MPDTRs
T S — = to states, and from states to models.

— N —
— . —

_______

ah+dx HMMs |

FIGURE 3 : Sharing of several triphone HMMs to a

single biphone HMM model. !
STATEs,

The second level of parameter sharing is the sharing among
the states of different HMMs. When a group of states are
shared, they have the same state transition probalaility
and the same observation distributibp . The sharing of
states is illustrated in FIGURE 4. .- -

b-ah+iy w-ah-+iy SPDTRs

»8»8*8_7 »8..8.,8_, FIGURE 7 : Overall four-layer sharing structure of
the speech recognition engine(SRE).
S~ =
<\ N / ~
N N e

MPDTRS

~ /- Notice that the items inside the dashed blocks may be
shared ~ NV shared. Also notice that the sharing can be performed
states: . ‘ across different layers: e.g., phone models and HMM
FIGURE 4 : Sharing of states of different HMMs. states, MPDTRs and SPDTRs. Depending upon the recog-

. o nition evaluation, this top-down or bottom-up procedure
The third level of parameter sharing is performed on th?night continue until the best result is achieved.
probability distribution bg; . This is illustrated in
FIGURE 5.



3. 5000 US CITY NAMES EXPERIMENTS estimated parameters. Experiment 7 in turn outperformed
experiment 5 with fewer Gaussians, showing the advantage

TABLE 1 summarizes a set of experiments conducted toof using the multi-layer sharing as depicted in FIGURE 7.
recognize isolated US city names. The speech data wasExperiments 7 and 8 show the recognition performance
recorded in a quiet sound booth at SONY Research Labs Mith different numbers of states, MPDTRs, and SPDTRs.
San Jose, California. A Sennheiser HMD-410 headset Even though there is a slight degradation in recognition
microphone was used for all recordings. The vocabularyPerformance from experiment 7 to experiment 8, we
items for the training were selected to include the triphonebelieve a proper balance of the number of MPDTRs should
and biphones from the 2000 most frequent words of offer a better recognition result with fewer HMM parame-
Eng“sh This word list was Composed by taking the mosters. Experiment 9 shows that a better HMM structure is
common words to all the following three published achieved by sharing more MPDTRs and SPDTRs than in
sources: Brown Corpus[5] top 5k words, the British experiment 6.

National Corpus[6] top 5k words, and the Switchboard

Corpus[7] top 5k words. To balance our training vocabu- lowest #of | #of | #of #of #of| topl
# | shared gauss|
lary, we also added a set of less common words from the struct model| state | MPDTR SppTR MiX|rec acq

above three sources and a set of randomly chosen words

from a 50k dictionary.Finally, 75 city names and 25 car 1 [NONEF| 7213 [10522 10527 10522] 1|77.2%
navigation commands were also added. The total numb o/ | model| 1753 | 5259| 5259 5259 | 1 ]83.8%
of unique recorded words for training only was 12,487. | 3 | model | 4122 /12366 12366 12366| 1 |80.5%

4| state | 6865 | 2975| 2975| 2975 | 1 |77.7%
The system was trained with speech data recorded from 5 | state | 6865 | 2975 2975| 5950 | 2 |86.3%
140 speakers. The training data set has a total of 7164 tfi6 | state | 6865 | 2975| 2975| 11900 4 |91.1%
phones out of 75813 recorded tokens. The testing data carn# | gauss| 6865 | 2975| 2975| 5678 | 4 |90.9%
tain 394 tokens from 4 testing speakers who were not |8 | gauss| 6865 | 2177| 2177| 5186 | 4 [90.1%

included in the training data set. We use ~5000 US city 9 [ gauss| 6240 | 2975| 2262 7841 | 4 |91.4%
names as the first set of experiments because it was easyto a.) 7164 triphone models appeared in the training data
generate the phonetic dictionary with the city names data- et The remaining 117,698 - 7164 unseen triphones
base that exists at SONY. The actual recognition dictionary  were shared to monophones.

contains 4927 US city names and 25 commands for car
navigation devices. Since the dictionary allows multiple
pronunciations, the total number of phonetic transcription
in the dictionary is 29,485.

TABLE 1. Five thousand US city name recognition
gesults with different HMM sharing structures.

The above results show the effectiveness of using the four-
er HMM sharing structure to improve the recognition
ile reducing the number of parameters. The time avail-
le to us limits our experiments to only continuous HMM
recognition. However, we believe that the same HMM
sharing structure will be equally effective on discrete

Results from experiments where the Gaussian function HMM recognition experiments with the assistance of
was used as the SPDTR (see FIGURE 7) are shown in EQUATION 2.

TABLE 1. The models in experiment 1 contain all the tri-

phone models appeared in training. The models in experi-4. CMU DICTIONARY EXPERIMENTS

ment 1 have been clustered to a smaller number of models ) _ ) )

for experiments 2 and 3. The models in experiment 4 wer@Ur focus, as stated in the title of this paper, is on very large
generated from the models in experiment 3. Because of tHgolated word recognition performance. A convenient
state sharing, some extra models were generated for English dictionary available for evaluation is CMU’s 110k
unseen triphones. This leads to 6865 unique models in dictionary[4]. This dictionary contains mostly words with
experiment 4, which is higher than the 4122 models in single phonetic spelling for each word with 39 basic pho-
experiment 3. The models in 5 were generated from expef€Mmes.

iment 4. The models in 6 were in turn generated from

model 5; and the models in experiments 7, 8, and 9 werd&ecause isolated word recognition uses no grammartical
generated from experiment 6. or syntactical information, and no other high level knowl-

edge except the low level acoustic information, it is very
Experiment 2 as shown in TABLE 1 outperformed experimportant that the speech dictionary describe the phonetic
ment 1 because the shared models provided more robustpellings as accurately and completely as possible.

The speech feature used throughout this paper was the c&?ﬁ
ventional MFCC and its first and second derivative. A sin®"
gle 39 dimensional feature vector was used as well as t
diagonal covariance matrix.



A modified dictionary (D2), as compared to the CMU orig-navigations commands. The top3 recognition performance
inal dictionary (D1), allows optional closures before stopss shown in TABLE 3.

and optional glottal stop phones before vowels. Another
version (D3), as compared to D2, corrected some of the|dictionarie§ 110k D3] 50k D5 5k D6|  Skcities D
phonetic spellings of the words and also added additional topl 79.2% | 79.6%| 85.9% 87.0%
spelling variations based on a set of phonetic rules created top2 87.4% | 88.6%| 91.2% 91.1%
on expert knowledge. The lastimproved version of the di¢-" top3 90.2% 91.4% 02.39 92.6%
tionary D4 comes from D3 plus the addition of real tran-
scriptions from our training data set.

TABLE 3. Isolated word recognition results with
dictionaries of different sizes and different types.

These four versions of 110k CMU dictionaries and the rec‘l-'ABLE 3 sh that the tonl i .
ognition accuracies with the best obtained HMMs are shows thatine top. recognition accuracy varies

shown in TABLE 2 . The HMMSs used in TABLE 2 are duite dramatically for different dictionaries, but the top3
trained with 153 tra.ining speakers. Recognition is per- recognition accuracies have less variation. Our future work

formed on 9633 word tokens from 20 independent speal'g_ fth furtthg_r 'tT"prO‘_’e the top 3 recognition results for these
ers. These 9633 testing tokens contain 1783 unique herent dictionaries.

common English words. For example, “coach”, “coast”,

“coat”, “code”, “coke”, and “cold” are all included in the 6. CONCLUSION

et for testing.
S riesing We have developed a Speech Recognition Engine (SRE)

CMU 51 S5 3 7 with integrated discrete and continuous HMMs in such a
dictionarieg (original) | +closure | +spelling | +training way that they can effectively use the same four-layer

topl 414.9% | 66.4%| 79.2%4 83.9% parameter sharing structures. We have used the system to

top2 535% | 76.6%| 87.4% 909%  conductexperiments to improve very large vocabulary iso-

fop3 57 7% 80.7% 90.2% 93.3% lated word recognition. Experiment results show that we

— - have been able to significantly improve 110k isolated word
TABLE 2. Isolated word recognition results with 110K recognition accuracy while maintaining robustness for sev-
CMU dictionaries. eral different vocabularies of varying sizes.

It can be seen from the table that we have significantly
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