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ABSTRACT

In this paper, we propose to use the missing data theory to al-
low the reconstruction of missing spectro-temporal parameters
in the framework of hybrid HMM/ANN systems. A simple sig-
nal-to-noise ratio estimator is used to automatically detect the
components that are unavailable or corrupted by noise (missing
components). A limited number of multidimensional gaussian
distributions are then used to reconstruct those missing compo-
nents solely on the basis of the present data. The reconstructed
vectors are then used as input to an artificial neural network esti-
mating the HMM state probabilities. Continuous speech recogni-
tion experiments have been done on filtered speech. In this case,
filtered components carry few or no information at all, and hence,
should probably be ignored. The results presented in this paper il-
lustrate this point of view. Complementary experiments also sug-
gest the interest of the proposed approach in the case of noisy
speech.

1. INTRODUCTION

In this paper, we propose to use the missing data theory to allow
the reconstruction of damaged spectro-temporal signal portions in
the framework of Automatic Speech Recognition (ASR) systems
based on Artificial Neural Networks and Hidden Markov Models
(hybrid HMM/ANN systems).

Contributions to the topic of robust automatic speech recogni-
tion under adverse conditions are mainly focused on two major
ideas. Spectral subtraction (and derived methods like RASTA fil-
tering [10]) allows to significantly reduce the mismatch between
training and test conditions by subtracting an estimation of the
noise power spectra from the spectra of the whole signal [2].
Given a noise model and the test condition, parameter compen-
sation techniques provide a way to dynamically update the para-
meters of the probability density functions (pdfs) associated with
the HMM states [9].

In some cases however, it could probably be better to ignore the
components of the feature vectors (resulting from a filter-bank
front-end) which represent spectral regions that are highly cor-
rupted by additive noise. Moreover, components representing re-
gions which are filtered out should also be disregarded by the sub-
sequent classification procedure. These components are labeled as
missing (as opposed to present components). Recent studies by
others [7, 11] have tried to develop an automatic speech recogni-
tion architecture based on these ideas. Results show that, in some
cases, up to 90% of the spectro-temporal representation can be ig-
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nored without significantly decreasing the speech recognition per-
formance. Their work use classification based on the sampling
paradigm (HMM state pdfs. are known). Gaussian Mixture Mod-
els (GMM) were used to represent the pdfs. associated with the
HMM states. Clearly, this allows to compute state likelihoods
on the basis of marginal distributions of the present components,
hence providing a principled way to ignore feature vector compo-
nents labeled as missing.

On the other hand, Artificial Neural Networks, combined with the
sequence modeling capabilities of HMMs, have gained interest in
the speech recognition community these past few years [4, 13].
This is probably because ANNs present an interesting alternative
to GMM modeling. Indeed, ANNs allow to perform classification
according to the diagnostic paradigm (based on estimations of the
HMM states a posteriori probabilities). This characteristic allows
to build speech recognition systems with fewer parameters than
for the classical GMM systems. However, ANNs, as opposed to
GMMs, do not provide any easy way to deal with missing compo-
nents.

This work addresses the problem of missing components recon-
struction to allow to use HMM/ANN systems. Reconstructed val-
ues are computed as the mean values of the missing components
given the present components. Simple probability density func-
tions (i.e. a limited number of multidimensional gaussian distri-
butions) are used to model the data, thus providing a simple way
to compute these conditional means. An automatic signal-to-noise
ratio estimator is used to automatically detect the components that
are unavailable or corrupted by noise (missing components). Re-
constructed vectors are then used as input to an HMM/ANN sys-
tem.

Experiments were performed for speech corrupted with additive
noise severely affecting two out of fifteen critical bands. For the
baseline system, the word error rate on a speaker independent tele-
phone speech continuous numbers recognition task jumped from
11% in the case of clean speech to 60%. With the proposed ap-
proach, the degradation was more graceful: from 11% to 17%.
This was slightly better than the improvement we obtained using
spectral subtraction. Experiments were carried on for low-pass fil-
tered speech with similar conclusions.

Additional experiments have been done to validate this approach
in the case of wideband noise. Results were mitigated. We did not
get the expected improvement. An alternative approach was also
used in this case. Following [8], we used spectral subtraction [1]
to enhance the corrupted speech signal prior to missing data re-
construction. Spectral subtraction lead to a significant robustness
increase. Using both spectral subtraction and missing data did not
yield further significant improvement.



2. MISSING DATA RECONSTRUCTION

Observation vectors x are assumed independent and identically
distributed according to a probability density function made of K
multidimensional gaussian distributions. The i-th distribution is
characterized by the following parameters: wi, the distribution
weight, �i, the distribution mean and Ci, its covariance matrix.
Some elements of x are labeled as missing and x can then be re-
organized as follows:

x = (xpxm); (1)

xp for the present components and xm for the missing compo-
nents. In a similar way, we can reorganize the elements of the
mean vectors and covariance matrices characterizing the pdf. of
x:
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We would like to reconstruct a complete vector solely on the ba-
sis of present components. Reconstruction will be done using
the conditional distribution of missing components according to
present components. This distribution is of the gaussian form.
The reconstructed elements will be the mean of this distribution,
that is to say, for the i-th gaussian:
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Considering the multi-gaussian distribution, the reconstructed
value is computed as follows:
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wherewi is the weight for the i-th distribution and�(xp; �ip; C
i
pp)

is the associated multidimensional gaussian distribution. This
term allows to weight the contributions of the different gaussians
according to the position of the present data vector in the parame-
ter space.

An alternative approach would be to ignore the missing com-
ponents and to only use the present components to compute the
HMM state likelihoods on the basis of marginal distributions. For
a parametric classifier (in the case of multi-gaussian HMM state
modeling for instance), it is possible, although it involves a lot of
computations. Indeed, covariance matrix inversions are required
each time there is a change in the missing/present data configu-
ration. This would also be possible with artificial neural network
classifiers, although not really practical since this would require
as many ANNs as possible data configurations.

Experiments described in [7] are related to multi-gaussian HMM
state modeling. Their results are in favor of the marginal approach
which yields somewhat better results than the reconstruction ap-
proach.

However, this last approach has several advantages. On the one
hand, one can only use a limited number of gaussians for the re-
construction part of the system. This allows to keep a compact
system (involving only a limited number of matrix inversions),
without significant damage for the overall recognition system (at
least during clean speech portions). On the other hand, it allows to
obtain reconstructed vectors that can be used as input to any clas-
sical automatic speech recognition system. In our case, it will be
an ASR system based on an ANN probability estimator.

3. SPECTRAL SUBTRACTION

Spectral subtraction was also used in this work in the case of
speech corrupted with additive noise. Spectral subtraction was
first used as reference. It was also applied prior to missing data
reconstruction and to provide a way to identify missing compo-
nents.

Generally, spectral subtraction introduces time-varying peaks and
valleys in the power spectrum. These are perceived as a musical
noise, which could have a significant impact on the resulting per-
formance of the system. To reduce the effect of this noise, Berouti
et al. [1] proposed a method where an overestimation of the noise
is subtracted from the corrupted signal (� parameter) and where
valleys are filled with a fraction of the noise power spectrum (�
parameter).

Hence, spectral subtraction is implemented as follows:

Po(!) =

n
Ps(!) ifPs(!) > �Pn(!)
�Pn(!) otherwise

(5)

with Ps(!) = Pi(!)� �Pn(!) (6)

and � � 1; and 0 < � � 1 (7)

where Pi(!) is the corrupted input power spectrum, Pn(!) is the
noise power spectrum estimated when speech is absent from the
signal, and Po(!) is the enhanced power spectrum. The � para-
meter is the overestimation factor and � is the spectral floor.

Following [8], portions where Ps(!) � �Pn(!) generally cor-
responds to spectro-temporal regions where noise dominates and
can then be identified as missing for the subsequent reconstruction
module.

4. EXPERIMENTS ON THE NUMBERS’93 CORPUS

Experiments have been done on a telephone speech connected
numbers recognition tasks. We have been using the NUM-
BERS’93 [6] database. The training set was composed of 1534
utterances (of which 1400 were used to adjust the weights of the
ANNs and 134 for cross-validation purposes) and 384 utterances
were used for testing. The corpus is composed of 36 vocabulary
words and the CMU 0.4 lexicon was used to obtain phonetic tran-
scriptions for these words.

A HMM/ANN hybrid baseline system was first developed.
Acoustic feature vectors were log-RASTA [10] filtered critical
band energies (complemented by their first derivatives). Log-
RASTA processing yields increased robustness towards channel
variabilities. Moreover, 9 feature frames were used as input to
the system, providing the ANN with contextual information. The
ANN was a feedforward multilayer perceptron. The word error
rate of this system was 13.6%. It should be noted here that we
will have to operate on spectral parameters. Indeed, we want to
reconstruct spectro-temporal portions that are filtered out or cor-
rupted by additive noise. A spectral representation of the speech
is used as it allows to isolate (and label as missing) the corrupted
frequency regions.

Then, we have developed a system based on the described recon-
struction approach. As explained in the subsequent sections, sev-
eral configurations have been investigated regarding the recon-
struction model. The module in charge of the missing portions



detection was either based on a signal-to-noise ratio estimator us-
ing energy histograms within the different frequency channels [3]
or else on the spectral subtraction approach (in the case of speech
corrupted with wideband noise).

4.1. Reconstruction models

4.1.1. Diagonal Covariance Matrices

We have been using multi-gaussian distributions with diagonal co-
variance matrices. In this case, reconstruction is nearly immediate
because the second term of Equation 3 is null. The reconstruction
simply operates by replacement of the missing data by their un-
conditional distribution mean. The drawback of this approach is
that it does not allow to use the correlation between the feature
vector elements, which is important between adjacent frequency
channels. And indeed, using a mono-gaussian distribution did not
yield any improvement. On the contrary, some degradation was
observed, probably because the distortion introduced by the re-
construction was higher than the distortion resulting from filtering
(see Figure 1).

Multi-gaussian distributions were used with some success. They
allow to model more complex distribution forms and can capture
correlation between feature elements. As can be seen in Figure 1,
this configuration yielded significant performance improvement
in extreme filtering cases and for distributions made of a large
number of gaussians. This approach has also been tested in [7].
Results showed poor performances.
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Figure 1. Word error rates for missing data reconstruction us-
ing diagonal covariance matrices. The dotted line is for the
baseline system. The ’�’,’+’ and ’�’ lines respectively corre-
spond to distributions modeled with 1, 16 and 64 gaussians.

4.1.2. Full Covariance Matrices

Full covariance matrices were used with more success. This is
justified by the strong correlation between the different spectral
components of the acoustic vectors. However, this kind of mod-
eling requires a lot of matrix inversions, which could become pro-
hibitive. Results presented on Figure 2 already show a highly sig-
nificant word error rate decrease with a distribution modeled by
a single multidimensional gaussian. Using more gaussians (32)
only yielded a marginal improvement, in the case of low-pass fil-
tering at least.

4.1.3. Using Context Frames

Diagonal as well as full covariance models were also used to
model several adjacent feature frames. Correlation across time
could indeed help the reconstruction of missing elements.
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Figure 2. Word error rates for missing data reconstruction us-
ing full covariance matrices. The dotted line is for the baseline
system and the continuous line is for reconstruction system us-
ing 1 gaussian.

Several configurations were tested. These involved from 2 up to
232 (4*58 HMM states) gaussians, modeling the distribution of
1, 3 or 5 adjacent spectral frames, with or without their first and
second derivatives. In the case of low-pass filtered speech, these
experiments indicated a slight preference for a system using 232
gaussians and a single feature frame. Using a wider acoustic con-
text generally did not yield improvements, while possibly leading
to resource overload. This, however, does not preclude the use
(and interest) of context distribution modeling, which could reveal
its potential for other kinds of perturbations like interruptions and
wideband noises.

The complexity of such an approach could be reduced by using
common covariance matrices. Additionally, the size of the fea-
ture vectors could be reduced by selecting time-frequency points
distributed across the spectro-temporal plane.

4.2. Noise-Corrupted Speech

Then, we investigated the case of a signal corrupted with additive
sine wave. Results are presented in Figure 3. It clearly shows that
the system based on missing data reconstruction outperforms the
other systems, including the systems based on spectral subtrac-
tion and on multiband recognition [5]. The excellent performance
can be explained by the fact that only two (because of the slight
overlap between critical band filters) out of fifteen critical bands
are corrupted. Hence, missing components can reliably be recon-
structed on the basis of the other parameters and their first deriv-
atives.

We finally investigated the case of a wideband noise perturba-
tor. Speech was corrupted with gaussian white noise at differ-
ent signal-to-noise ratios. In this case, regions with high speech-
energy, and which dominate the noise, are identified as present,
while low-energy regions are labeled as missing. This gives rise to
missing data detection patterns which are radically different from
those obtained in the case of coloured noise. As can be expected,
we obtain spectral patterns isolating formants and high-energy vo-
calic regions from the remainder of the time-frequency represen-
tation. Missing data reconstruction based on this pattern did not
yield the expected improvement. We even observed some addi-
tional degradation as we increased the minimum SNR threshold
for considering a frequency channel as present.

Spectral subtraction was then used as pre-processing and missing
data identification scheme. Results are summarized in Table 1. As
can be seen, we did not get any significant improvement by com-
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Figure 3. Word level error rates for different noise levels
(400 Hz sine wave, global SNR from 0 dB to 30 dB). The dot-
ted line is for the baseline system. The ’+’, ’�’ and ’�’ line
are respectively for the missing data reconstruction approach
(based on a mono-gaussian distribution and a single feature
frame), for the multiband approach and for the spectral sub-
traction approach.

bining spectral subtraction and missing data reconstruction.

It should be noted that all these experiments were done using a
mono-gaussian full covariance matrix reconstruction model. Al-
though this model performed well in the case described in the pre-
vious section, it may not be accurate enough in the current case.
Work in progress particularly investigates the use of more com-
plex distributional modeling as well as time-domain correlation
across feature frames.

Error Rate (%) 0 dB 10 dB
Baseline 76.1 32.7

Spectral Subtraction 50.5 30.8
Spectral Subtraction + Missing Data 49.5 30.3

Table 1. Word error rates on continuous numbers recognition
(NUMBERS’93 database) with white noise addition (0 dB and
10 dB SNR). Reconstruction was based on a full covariance
matrix mono-gaussian distribution and a single feature frame.

5. DISCUSSION AND CONCLUSIONS

This paper presents the use of a missing data reconstruction tech-
nique in the framework of automatic speech recognition systems
using Artificial Neural Networks together with Hidden Markov
Models.

Results presented here show that a fairly simple reconstruction
system, controlled by an elementary signal-to-noise ratio estima-
tor, provides a significant robustness improvement in the case
of low-pass filtering as well as coloured additive perturbations.
White noise perturbations were then investigated without success.
Missing data reconstruction alone, as well as combined with spec-
tral subtraction did not yield the expected improvement. Further
work includes the use of several context frames and more accurate
reconstruction models.

Applying missing data, as well as spectral subtraction, requires to
work in the spectral domain. Our experiments were done with crit-
ical band energies. Linear prediction cepstral coefficients could
also be computed from the reconstructed critical band energies.
Generally, cepstral coefficients perform better that straight spec-
tral coefficients.

Recent work in the field of multiband speech recognition [5] has
shown that the use of linear prediction cepstral coefficients com-
puted on narrow frequency bands also yields an inherent robust-
ness compared to the use of straight critical bands and to the use of
LP cepstral coefficients computed on the whole frequency range.
Experiments by us [5] and by others [14, 12] confirm this obser-
vation for different frequency band configurations. Parameters of
this kind could also be used.
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