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ABSTRACT

In this paper, we propose to use the missing data theory to d-
low the reconstruction of missing spectro-temporal parameters
in the framework of hybrid HMM/ANN systems. A simple sig-
nal-to-noise ratio estimator is used to automatically detect the
components that are unavailable or corrupted by noise (missing
components). A limited number of multidimensional gaussian
distributions are then used to reconstruct those missing compo-
nents solely on the basis of the present data. The reconstructed
vectors are then used as input to an artificial neural network esti-
mating the HMM state probabilities. Continuous speech recogni-
tion experiments have been done on filtered speech. In this case,
filtered components carry few or no information at all, and hence,
should probably beignored. Theresults presented in this paper il-
lustrate this point of view. Complementary experiments also sug-
gest the interest of the proposed approach in the case of noisy

speech.

1. INTRODUCTION

In this paper, we propose to use the missing data theory to allow
the reconstruction of damaged spectro-temporal signal portionsin
the framework of Automatic Speech Recognition (ASR) systems
based on Artificial Neural Networks and Hidden Markov Models
(hybrid HMM/ANN systems).

Contributions to the topic of robust automatic speech recogni-
tion under adverse conditions are mainly focused on two major
ideas. Spectral subtraction (and derived methods like RASTA fil-
tering [10]) alows to significantly reduce the mismatch between
training and test conditions by subtracting an estimation of the
noise power spectra from the spectra of the whole signal [2].
Given a noise model and the test condition, parameter compen-
sation techniques provide a way to dynamically update the para-
meters of the probability density functions (pdfs) associated with
theHMM states [9].

In some cases however, it could probably be better to ignore the
components of the feature vectors (resulting from a filter-bank
front-end) which represent spectral regions that are highly cor-
rupted by additive noise. Moreover, components representing re-
gionswhich arefiltered out should al so be disregarded by the sub-
sequent classification procedure. Thesecomponentsarelabeled as
missing (as opposed to present components). Recent studies by
others[7, 11] have tried to develop an automatic speech recogni-
tion architecture based on these ideas. Results show that, in some
cases, up to 90% of the spectro-temporal representation can beig-
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nored without significantly decreasing the speech recognition per-
formance. Their work use classification based on the sampling
paradigm (HMM state pdfs. are known). Gaussian Mixture Mod-
els (GMM) were used to represent the pdfs. associated with the
HMM states. Clearly, this allows to compute state likelihoods
on the basis of marginal distributions of the present components,
hence providing a principled way to ignore feature vector compo-
nents |abeled as missing.

On the other hand, Artificial Neural Networks, combined with the
sequence maodeling capabilities of HMMs, have gained interest in
the speech recognition community these past few years [4, 13].
Thisis probably because ANNSs present an interesting alternative
to GMM modeling. Indeed, ANNsallow to perform classification
according to the diagnostic paradigm (based on estimations of the
HMM states a posteriori probabilities). This characteristic allows
to build speech recognition systems with fewer parameters than
for the classical GMM systems. However, ANNS, as opposed to
GMMs, do not provide any easy way to deal with missing compo-
nents.

This work addresses the problem of missing components recon-
struction to allow to use HMM/ANN systems. Reconstructed val-
ues are computed as the mean values of the missing components
given the present components. Simple probability density func-
tions (i.e. alimited number of multidimensiona gaussian distri-
butions) are used to model the data, thus providing a simple way
to computethese conditional means. Anautomatic signal-to-noise
ratio estimator isused to automatically detect the components that
are unavailable or corrupted by noise (missing components). Re-
constructed vectors are then used as input to an HMM/ANN sys-
tem.

Experiments were performed for speech corrupted with additive
noise severely affecting two out of fifteen critical bands. For the
baseline system, theword error rate on aspeaker independent tele-
phone speech continuous numbers recognition task jumped from
11% in the case of clean speech to 60%. With the proposed ap-
proach, the degradation was more graceful: from 11% to 17%.
Thiswas dightly better than the improvement we obtained using
spectral subtraction. Experimentswere carried on for low-passfil-
tered speech with similar conclusions.

Additional experiments have been done to validate this approach
in the case of wideband noise. Resultswere mitigated. We did not
get the expected improvement. An alternative approach was also
used in this case. Following [8], we used spectral subtraction [1]
to enhance the corrupted speech signa prior to missing data re-
construction. Spectral subtraction lead to a significant robustness
increase. Using both spectral subtraction and missing datadid not
yield further significant improvement.



2. MISSING DATA RECONSTRUCTION

Observation vectors z are assumed independent and identically
distributed according to a probability density function made of K
multidimensional gaussian distributions. The i-th distribution is
characterized by the following parameters. w*, the distribution
weight, u', the distribution mean and C*, its covariance matrix.
Some elements of x are labeled as missing and x can then be re-
organized as follows:
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xp for the present components and x,,, for the missing compo-
nents. In a similar way, we can reorganize the elements of the
mean vectors and covariance matrices characterizing the pdf. of
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We would like to reconstruct a complete vector solely on the ba-
sis of present components. Reconstruction will be done using
the conditional distribution of missing components according to
present components. This distribution is of the gaussian form.
The reconstructed elements will be the mean of this distribution,
that isto say, for the i-th gaussian:
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Considering the multi-gaussian distribution, the reconstructed
value is computed as follows:
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wherew® istheweight for thes-th distribution and ¢ (z, 3, Cpp)
is the associated multidimensional gaussian distribution. This
term allows to weight the contributions of the different gaussians
according to the position of the present data vector in the parame-
ter space.

An alternative approach would be to ignore the missing com-
ponents and to only use the present components to compute the
HMM statelikelihoods on the basis of marginal distributions. For
a parametric classifier (in the case of multi-gaussian HMM state
modeling for instance), it is possible, although it involves alot of
computations. Indeed, covariance matrix inversions are required
each time there is a change in the missing/present data configu-
ration. Thiswould aso be possible with artificial neural network
classifiers, although not really practical since this would require
as many ANNSs as possible data configurations.

Experiments described in [7] are related to multi-gaussian HMM
state modeling. Their resultsarein favor of the marginal approach
which yields somewhat better results than the reconstruction ap-
proach.

However, this last approach has several advantages. On the one
hand, one can only use alimited number of gaussians for the re-
construction part of the system. This allows to keep a compact
system (involving only a limited number of matrix inversions),
without significant damage for the overall recognition system (at
least during clean speech portions). On the other hand, it allowsto
obtain reconstructed vectors that can be used as input to any clas-
sical automatic speech recognition system. In our case, it will be
an ASR system based on an ANN probability estimator.

3. SPECTRAL SUBTRACTION

Spectral subtraction was aso used in this work in the case of
speech corrupted with additive noise. Spectral subtraction was
first used as reference. It was also applied prior to missing data
reconstruction and to provide a way to identify missing compo-
nents.

Generally, spectral subtraction introduces time-varying peaks and
valleys in the power spectrum. These are perceived as a musica
noise, which could have a significant impact on the resulting per-
formance of the system. To reduce the effect of thisnoise, Berouti
et a. [1] proposed amethod where an overestimation of the noise
is subtracted from the corrupted signal («a parameter) and where
valleys are filled with afraction of the noise power spectrum (3
parameter).

Hence, spectra subtraction isimplemented as follows:
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where P;(w) isthe corrupted input power spectrum, P, (w) isthe
noise power spectrum estimated when speech is absent from the
signal, and P, (w) isthe enhanced power spectrum. The « para-
meter isthe overestimation factor and 3 is the spectral floor.

Following [8], portions where P (w) < BP,(w) generaly cor-
responds to spectro-temporal regions where noise dominates and
can then beidentified asmissing for the subsequent reconstruction
module.

4. EXPERIMENTSON THE NUMBERS' 93 CORPUS

Experiments have been done on a telephone speech connected
numbers recognition tasks. We have been using the Num-
BERS 93 [6] database. The training set was composed of 1534
utterances (of which 1400 were used to adjust the weights of the
ANNs and 134 for cross-validation purposes) and 384 utterances
were used for testing. The corpus is composed of 36 vocabulary
words and the CMU 0.4 |exicon was used to obtain phonetic tran-
scriptions for these words.

A HMM/ANN hybrid baseline system was first developed.
Acoustic feature vectors were log-RASTA [10] filtered critical
band energies (complemented by their first derivatives). Log-
RASTA processing yields increased robustness towards channel
variabilities. Moreover, 9 feature frames were used as input to
the system, providing the ANN with contextua information. The
ANN was a feedforward multilayer perceptron. The word error
rate of this system was 13.6%. It should be noted here that we
will have to operate on spectral parameters. Indeed, we want to
reconstruct spectro-temporal portions that are filtered out or cor-
rupted by additive noise. A spectral representation of the speech
isused asit allowsto isolate (and label as missing) the corrupted
frequency regions.

Then, we have developed a system based on the described recon-
struction approach. As explained in the subsegquent sections, sev-
eral configurations have been investigated regarding the recon-
struction model. The module in charge of the missing portions



detection was either based on a signal-to-noise ratio estimator us-
ing energy histograms within the different frequency channels[3]
or else on the spectral subtraction approach (in the case of speech
corrupted with wideband noise).

4.1. Reconstruction models
4.1.1. Diagonal Covariance Matrices

We have been using multi-gaussian distributions with diagonal co-
variance matrices. Inthiscase, reconstructionisnearly immediate
because the second term of Equation 3isnull. The reconstruction
simply operates by replacement of the missing data by their un-
conditional distribution mean. The drawback of this approach is
that it does not alow to use the correlation between the feature
vector el ements, which isimportant between adjacent frequency
channels. And indeed, using amono-gaussian distribution did not
yield any improvement. On the contrary, some degradation was
observed, probably because the distortion introduced by the re-
construction was higher than the distortion resulting from filtering
(see Figure 1).

Multi-gaussian distributions were used with some success. They
allow to model more complex distribution forms and can capture
correlation between feature elements. Ascan be seenin Figure1l,
this configuration yielded significant performance improvement
in extreme filtering cases and for distributions made of a large
number of gaussians. This approach has aso been tested in [7].
Results showed poor performances.
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Figurel Word error ratesfor missingdatareconstruction us-
ing diagonal covariance matrices. The dotted lineis for the
baseline system. The’x’,’+' and '+’ linesrespectively corre-
spond to distributionsmodeled with 1, 16 and 64 gaussians.

4.1.2. Full Covariance Matrices

Full covariance matrices were used with more success. This is
justified by the strong correlation between the different spectral
components of the acoustic vectors. However, this kind of mod-
eling requires alot of matrix inversions, which could become pro-
hibitive. Results presented on Figure 2 already show ahighly sig-
nificant word error rate decrease with a distribution modeled by
a single multidimensional gaussian. Using more gaussians (32)
only yielded amarginal improvement, in the case of |ow-pass fil-
tering at least.

4.1.3. Using Context Frames

Diagonal as well as full covariance models were aso used to
model severa adjacent feature frames. Correlation across time
could indeed help the reconstruction of missing elements.
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Figure2. Word error ratesfor missingdatareconstruction us-
ingfull covariance matrices. Thedotted lineisfor thebaseline
system and thecontinuouslineisfor reconstruction system us-
ing 1 gaussian.

Severa configurations were tested. These involved from 2 up to
232 (4*58 HMM states) gaussians, modeling the distribution of
1, 3 or 5 adjacent spectral frames, with or without their first and
second derivatives. In the case of low-pass filtered speech, these
experiments indicated a dight preference for a system using 232
gaussians and a single feature frame. Using awider acoustic con-
text generally did not yield improvements, while possibly leading
to resource overload. This, however, does not preclude the use
(andinterest) of context distribution modeling, which could reveal
its potential for other kinds of perturbations likeinterruptions and
wideband noises.

The complexity of such an approach could be reduced by using
common covariance matrices. Additionally, the size of the fea-
ture vectors could be reduced by selecting time-frequency points
distributed across the spectro-temporal plane.

4.2. Noise-Corrupted Speech

Then, weinvestigated the case of asignal corrupted with additive
sinewave. Resultsare presented in Figure 3. It clearly shows that
the system based on missing data reconstruction outperforms the
other systems, including the systems based on spectral subtrac-
tion and on multiband recognition [5]. The excellent performance
can be explained by the fact that only two (because of the slight
overlap between critical band filters) out of fifteen critical bands
are corrupted. Hence, missing components can reliably be recon-
structed on the basis of the other parameters and their first deriv-
atives.

We finally investigated the case of a wideband noise perturba-
tor. Speech was corrupted with gaussian white noise at differ-
ent signal-to-noise ratios. In this case, regions with high speech-
energy, and which dominate the noise, are identified as present,
whilelow-energy regionsarelabeled asmissing. Thisgivesriseto
missing data detection patterns which areradically different from
those obtained in the case of coloured noise. As can be expected,
we obtain spectral patternsisolating formantsand high-energy vo-
calic regions from the remainder of the time-frequency represen-
tation. Missing data reconstruction based on this pattern did not
yield the expected improvement. We even observed some addi-
tional degradation as we increased the minimum SNR threshold
for considering a frequency channel as present.

Spectral subtraction was then used as pre-processing and missing
dataidentification scheme. Resultsaresummarizedin Table 1. As
can be seen, we did not get any significant improvement by com-
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Figure 3. Word level error rates for different noise levels
(400 Hz sinewave, global SNR from 0 dB to 30 dB). The dot-
ted lineisfor the baseline system. The'+’, ' x’ and '« line
arerespectively for the missing data reconstruction approach
(based on a mono-gaussian distribution and a single feature
frame), for the multiband approach and for the spectral sub-
traction approach.

bining spectral subtraction and missing data reconstruction.

It should be noted that all these experiments were done using a
mono-gaussian full covariance matrix reconstruction model. Al-
though thismodel performed well in the case described in the pre-
vious section, it may not be accurate enough in the current case.
Work in progress particularly investigates the use of more com-
plex distributional modeling as well as time-domain correlation
across feature frames.

Error Rate (%) 0dB | 10dB

Baseline 76.1 32.7

Spectral Subtraction 50.5 | 30.8
Spectral Subtraction + Missing Data | 49.5 | 30.3

Tablel1. Word error rateson continuousnumber srecognition
(NUMBERS' 93 database) with white noise addition (0 dB and
10 dB SNR). Reconstruction was based on a full covariance
matrix mono-gaussian distribution and asinglefeatureframe.

5. DISCUSSION AND CONCLUSIONS

This paper presents the use of a missing data reconstruction tech-
nique in the framework of automatic speech recognition systems
using Artificial Neural Networks together with Hidden Markov
Models.

Results presented here show that a fairly simple reconstruction
system, controlled by an elementary signal-to-noise ratio estima-
tor, provides a significant robustness improvement in the case
of low-pass filtering as well as coloured additive perturbations.
White noise perturbations were then investigated without success.
Missing data reconstruction alone, aswell as combined with spec-
tral subtraction did not yield the expected improvement. Further
work includesthe use of several context frames and more accurate
reconstruction models.

Applying missing data, aswell as spectral subtraction, requiresto
work inthe spectral domain. Our experimentswere donewith crit-
ical band energies. Linear prediction cepstral coefficients could
also be computed from the reconstructed critical band energies.
Generally, cepstral coefficients perform better that straight spec-
tral coefficients.

Recent work in the field of multiband speech recognition [5] has
shown that the use of linear prediction cepstral coefficients com-
puted on narrow frequency bands a so yields an inherent robust-
ness compared to the use of straight critical bands and to the use of
LP cepstral coefficients computed on the whole frequency range.
Experiments by us [5] and by others [14, 12] confirm this obser-
vation for different frequency band configurations. Parameters of
this kind could also be used.
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