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ABSTRACT

This paper describes the design of a multilingual speech recognizer

[ Language]| Utterances Speakers Spoken urits

using an LVCSR dictation database which has been collected un- Chinese 5124 77 150,000
der the projeciGlobalPhone. This project at the University of Croatian 2826 62 80,000
Karlsruhe investigates LVCSR systems in 15 languages of the world, Japanese 5641 62 200,000
namely Arabic, Chinese, Croatian, English, French, German, ltalian, Korean 1587 22 140,000
Japanese, Korean, Portuguese, Russian, Spanish, Swedish, Tamil, | Turkish 5371 82 112,000
and Turkish. Based on a global phoneme set we built different muilti- Spanish 5455 79 160,000
lingual speech recognition systems for five of the 15 languages. Con- | _G€rman 1000 3 14,000
text dependent phoneme models are created data-driven by introduc- o

ing questions about language and language groups to our polyphone Table 1:GlobalPhone data used for training

clustering procedure. We apply the resulting multilingual models to
unseen languages and present several recognition results in language
independent and language adaptive setups. 2 The GlobalPhone Database
; For the development of multilingual recognition systems, we have
1. Introduction been collecting theGlobalPhone database which currently con-
As the demand for speech recognition systems in multiple languagegsts of the languages Arabic, Chinese (Mandarin and Wu), Croatian,
grows, the development of multilingual systems which combine thegerman, Japanese, Korean, Portuguese, Russian, Spanish, Swedish,
phonetic inventory of many languages into one single acoustic modetamil and Turkish. In each language about 100 native speakers were
setis of increasing importance. The benefits of such an approach argsked to read 20 minutes of political and economic articles from a na-
tional newspaper. Their speech was recorded in office quality, with
1. Reduced complexity of systems by sharing models and parana close-talking microphone. The corpus is fully transcribed includ-

eters, adressed for example in [1] ing spontaneous speech effects. Up to now we collected 233 hours
2. Integrated language identification as for example described iff SPoken speech from about 1300 speakers in total. Further details
[2] and [3] about theGlobalPhone project are given in [7].

3. Bootstrapping systems fanseerlanguages with limited adap- - Taple 1 shows the part of tf@lobalPhone database used for train-
tation data [4], [5], [6]. ing. The monolingual and multilingual test sets consist of 100 ut-
terances per language, the crosslingual experiments are evaluated on
Combining acoustic models requires the definition of multilingual 200 German utterances. Because of the limited corpus size, we are
phonetic inventories. Previous systems have been limited to comot able to estimate reliable LVCSR n-gram models and vocabular-
textindependent modeling. For the monolingual case context depefes, which results in high out-of-vocabulary rates. Since we focus
dent modeling is proven to increase recognition performance signifhere on acoustic modeling and compare error rates across languages,
icantly. Such improvements from context dependence extend natwve reduced the OOV-rate to 0.0% by including all test words into the
urally to the multilingual setting, but the use of context dependenianguage model as monograms with small probabilities. We defined
models raises the question of how to construct a robust, compach 10K test dictionary by supplementing the test words with the most
and efficient multilingual model set. By applying a decision tree frequently seen training units.
based clustering procedure we trained three context dependent sys-
tems which share their parameters in different ways. For one system ;
we add language questions and afterwards analyze the resulting de- 3. MonO“ngual SyStemS
cision tree. We developed monolingual LVCSR systems applying our fast

crosslingual bootstrap technique [6] to initialize the not yet modeled
For all experiments we use our multilingual datab@ebalPhone languages. In each language the resulting baseline engine consists of
which is briefly introduced in the first section of this paper. In the a fully continuous 3-state HMM system with 1500 polyphone mod-
second part, we describe the monolingual systems trained with thisls. Each HMM-state is modeled by one codebook which contains a
database. The multilingual acoustic modeling is introduced in themixture of 16 Gaussian distributions. The preprocessing is based on
next section. In the last two sections we present results in monolini3 Mel cepstral coefficients with first and second order derivatives,
gual, multilingual, and crosslingual setups based on the systems crpewer and zero crossing rate. After ceptral mean substraction, a lin-
ated. ear discriminant analysis is used to reduce the input to 24 dimensions.



Language|| Performance [ER]

Phonemes [Worldbet] | KO SP][CR[TU [JA] > ]

Chinese 18.4% n,m,s,|,tS,p,b,t,d,g,k X X X X X
Croatian 20.0% i,e,o X X X X X 14
Japanese 10.0% fj,z X X X X
Korean 47.3% r,u X X X X
Spanish 20.0% dz X X X X 6
Turkish 16.9% a X X X
S X X X
Table 2: Error Rates [ER] of currently best monolingual systems | h X X X
4 X X X 4
Table 2 shows the performance in error rates achieved by our cur=7 5T X | X
rently best monolingual systems. The results for Chinese are giveh p X X
in terms of pinyin units, for Japanese in terms of hiragana words, ang X X
for the Korean language in morpheme based syllables. V.Z X X
v,7 X X
4. Language Independent Speech tst 7S oE oA < X X | 10
it p'.t'k,dZ',s’,oE,0a,4i,
Recognltlon UE,ENA,iAUA,iulig,i0 ia X 17
For multilingual speech recognition we intend to share acoustig D,G,T,V,r(,ai,au,ei,eu,0 X
models of similar sounds across languages. Similarities of sounds g+ e+ j+.0+.u+ X 15
are documented in international phonemic inventories like Sampal, paiata] c’, pélatal d X 2
Worldbet, or IPA [8], which classify sounds based on phonetic ix, soft X 2
knowledge. On the other hand data-driven methods are proposed f¢ 2 Ng,V[,A:e:,i:,0:,4: X 8
example in [9]. In this paper we introduce a data-driven procedur Monolingual> " = 170 40 40| 30 | 29 | 31
for multilingual context dependent acoustic modeling. Multiingual 78

4.1. Global Phoneme Set

Based on the phonetic inventory of five monolingual systems we de-

fined aglobal phoneme sébr the languages Croatian, Japanese, Ko- ) ) ) )

rean, Spanish and Turkish. Sounds which are represented by tfge tree node according to this question. After reaching the prede-
same IPA symbol share one common phoneme categorie. The resuftt€d number of polyphones the splitting procedure ends. We ex-
ing setis shown in table 3 in Worldbet notation. Altogether it consiststended this clustering routine to the multilingual case by introduc-
of 78 phonemes plus a silence and two noise models for spontaneolRg gquestions about the language and language groups to which a
speech effects. 14 phonemes are shared across all five languages, Bi@neme belongs. Therefore the decision whether phonetic context

Table 3: Global Phoneme Set [Worldbet notation]

the five languages. data driven. We started with 250,000 quintphones over the five dif-
ferent languages and created two fully continuous systéms-
4.2 Multilingual Acoustic Modeling tag3with 3000 models antL5-tag75with 7500 models which is

exactly the same size as the five monolingual systems (5x1500).
Based on these 78 phoneme categories, we build three different mul-
tilingual systemsML5-mix ML5-sep andML5-tag In the firstone 4 3. Analysis of Language Questions
we share all models across languages without preserving any infor-
mation about the language. For each of the 78 phonemes we initiaBefore reporting recognition results using the multilingual systems
ize one mixture of 16 Gaussian distributions and train the models byve intend to describe the pertinence of language questions compared
sharing the data of all five languages. The resulting recogMzé&r to phonetic questions as well as the language information rate of
mix is a fully continuous system with 3000 models mixed over all polyphone models.
languages. In the second multilingual systdirb-sepeach element
is modeled separately for each language. No data are shared, all mod-
els except silence and noise are language dependent. For each of the
170 phonemes we initialize one mixture of 16 Gaussian distributions, | _— . e
after training this results in a fully continuous system with 3000 lan- 1et06 | 3
guage dependent models. In the third multilingual sysiéind-tag
we attached a language tag to each of the 78 phoneme categories in 100000 | }*
order to preserve the language information. g

1e+07

Sum of all questions ——
phonetic context questions -

i isi | estions: KOREAN -
To achieve context depende_nt phoneme models we appl_y a decision w0000} lnguage questions TURKISH
tree clustering procedure which uses an entropy based distance mea- lenguage quesions: CROATIAN ———
. . . . ; anguage questions: JAPANESE ----
sure, defined over the mixture weights of Gaussians, and a ques- language questions: SPANISH -
tion set which consists of linguistically motivated questions about 0 oo 100 1500 2000 2500 3000

the phonetic context of a phoneme model. During clustering, the

question with the highest entropy gain is selected when splitting Figure 1: Importance of Language Questions



placed the Gaussians’ distributions in the existing polyphone clus-
ter tree by these language distributions and recalculated the entropy

[ # 500models| # 1500 models] # 3000 models]

76 KO+TU 100 KO+TU 146 word bound based distance. The cumulated distance is plotted over the number
=5 ROREAN 73 KOREAN | 131  back-vow of nodes in figure 3. The most important finding is that most parts of
30 front-vow 73  back-vow 130 front-vow . - . .
27 back-vow 65  front-vow 128  consonant language |nf0rmat!qn are clustered c_)ut after about 3000 splits, which
23 vowel 61 wordbound | 113 KO+TU means that a multilingual system with 3000 polyphone models and
22 unvoiced 53  consonant 98 KOREAN more consists of mostly monolingual acoustic models.
20 silence 48  unvoiced 97  voiced
19  fric-sibil 48  alveodental 90 vowel le+07
16  word bound| 46 vowel 88 unvoiced g
14  nasal 42 voiced 85 nasal
10 voiced 42  nasal 84 alveodental 3
10  round 36 silence 79 JAPANESE g 1e°
10 JAPANESE| 36 plos-unvoic 63  plos-unvoic K i
10 consonant 35  frik-sibil 59  frik-sibil 3 ¢
9 plos-unvoic| 32 JAPANESE 59 close-vow g 100000 I°
9 open-vow 29  round 56 silence g ¢
9 CR+JA+SP| 28 plosive 55  round
Table 4: Prominence of asked questions 10000 _—
. . 0 2000 4000 6000 8000 10000 12000 14000
For the purpose of pertinence we computed the sum of entropy gain number of nodes
and plotted it over the number of splitted polyphones in figure 1. The
curve"sum of all questions”gives the overall entropy gain of all Figure 3: Language information rate of clustered polyphones

guestions asked during the clustering procedure, whereas the cur\éfz - .
"phonetic context questionsshows the entropy gain belonging to 4-4. Multilingual Experiments

non-language questions. The gap between both curves indicates thgle following multilingual experiments are twofold: firstwe explore
major parts of the entropy gain results from language questions. Thghich sharing method performs best, and second we examine the
remaining five curves give the contribution of questions belongingy, it of sharing the acoustic parameters. The system architecture,
to only one language. It is shown that questions about Korean angl,e preprocessing and the training procedure are identical throughout
Turkish are more important than about other languages, especially ifhjs tests. To answer the first question we compare the performance
the beginning of clustering. This indicates that sounds in those twojs he multilingual systenML5-tag3to ML5-mix for all languages.
languages are definetely different from the rest. Both results demoq:igure 4 shows that the tagged system outperformes the mixed sys-
strate that_lan_guage questions are frequently_ asked and are especi_a(léyn significantly by 5.3% error rate (3.1% - 8.7%). This indicates
in the beginning more important than questions about the phonetig,a¢ hreserving the language information and introducing questions

context of a phoneme. ltis also evid_ent that the data-driven decisioqy, ¢ languages and language groups leads to significant improve-
does not reflect the IPA-based classification across languages. In ta;

! ’ ; 4 ients in the multilingual setup.
ble 4 we compile the detailed list of asked questions ranked by fre-
guency, after clustering 500, 1500, and 3000 polyphone models. The
highly frequent occurence of the question about the language group [EMono mML5-tag75 OML5-tag3 0 MLS-mix |
Korean+Turkish sustains the above findings. Also the decreasing im-

X e 60
portance of language questions towards the end of splitting process ;‘EE-%
. h -3
can be seen from comparing column "500 models” to 3000 models”. 3 .
’ w0 | £27 i -y
N e SR

20 - e -
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Figure 4: Results for multilingual setup [Error Rate]

To answer the second question we varied the number of polyphones
modeled in the best multilingual systawti5-tag In ML5-tag3the
model number is reduced to 40% of the monolingual systems (3000
vs 5x1500), which leads in average to 3.14% (1.2% - 5.0%) perfor-

T mance degradation. But not all of the degradation can be explained
by the reduced model nhumber as the comparison Witts-tag75
Figure 2: Language distribution of tree node shows. This system is of same model size like the 5 monolingual

systems, but we still observe an average performance gap of 1.07%
Second, we want to analyze the language information rate of the rg0.3% - 2.4%). We therefore conclude that language independent
sulting polyphone models. For this purpose we computed the lanmodeling decreases the model precision for recognition of seen lan-
guage distribution for each split node as pictured in figure 2. We reguages which coincident to other studies e.g. [1].



5. Language Adaptive Speech Recognition the monolingual systems is 36.4% word error rate (47.4% - 28.4%),
In this section we investigate the multilingual systems’ performanceversus. 21.1% fOMLS.'m'X we there_f_o re can conclu_de that boot-
when applied to recognizenseenanguages. Our goal is to rec- strapping from a multilingual recognition system achieves better re-

oghize German spoken speech. Experiments with and without Ians_ults, especially if nothing is known about the new unseen language.
guage adaptation are performed. For adaptation we used up to 1000

utterances, for testing 200 utterances of 3 speakers fro@lobal- % . ‘

Phone database. The German baseline system achieves 15.8% word S5 1

error rate tested on a 60k-dictionary. For our experiments we pre- 50 |

sume that the German pronunciation dictionary is given. = ] aJA
%, 45 e KOl

5.1. Dictionary Adaptation g 4 1
o

For recognizing unseen languages we need to define an appropriate g B - |

mapping from our global phoneme set to the target phonemes. In our ‘g 30 | Turkishsystem —— FTeme— #5

experiments we replaced the German phonemes by the correspond- Korean system -+ CTUUTTRCUMWMIL

. . 25 | Japanese system «© 8

ing IPA-based phoneme category. Since the global phoneme set con- Spanish system =

tains models from five languages, a German sound can have up to 20  Croatian system  « 1

five counterparts. In the first experiment we therefore explore differ- 15 b MLSmix ~=—-  BaselineGerman

ent pronunciation dictionaries: Three dictionaries where the German 0 2000 4000 6000 8000 10000 12000 14000

phonemes are mapped to language dependent phonemes (Japanese, Number of adaptation words

Spanish, and Turkish) and a 5-lingual dictionary containing the pro-

nunciation variants of all five languages. In the 5-lingual case the Figure 5: Results for language adaptation [Word Error]

decision for the best matching pronunciation variant is left to the de-

coder. We choose the systevi5-tag3to compare the four dictio- 6. Conclusion

naries because it performs best in the multilingual setup. It achieveg, this paper multilingual LVCSR systems for five languages, namely
50% word error rate on the S-lingual dictionary which clearly out- croatian, Japanese, Korean, Spanish, and Turkish are presented. To
performes the Japanese (65.0%) and the Spanish (59.5%) but not thgsate multilingual context dependent acoustic models we evaluated
Turkish (49.5%) one. The results can be explained by the fact thajifferent methods of parameter sharing, among other things ques-
Japanese phonotactic does not cover the German one because ofijths about languages and language groups are introduced. We ap-
mora structure; Turkish tends to have long words and fits better inigjieq the trained systems to monolingual, multilingual and crosslin-
the German phonotactic whereas the 5-lingual dictionary has 5 timegy | setups. The results indicate that the method of parameter shar-

more entries which leads to higher confusion. We looked into th§ng shoud be decided depending on whether multilingual or crosslin-

pronunciation variants used by the decoder, and found that Spanig}y,a| speech recognition is projected.

models are preferred for short function words, which might result

from the fact that 20% of the Spanish corpus consists of 2 phoneme
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