Automatic Utterance Type Detection Using Suprasegmental Features
Helen Wright

Centre for Speech Technology Research, University of Edinburgh,
80, South Bridge, Edinburgh, U.K. EH1 1HN
http://www.cstr.ed.ac.uk

ABSTRACT 2. DATA

The goal of the work presented here is to automatically predict thEhe experiments reported here use a subset of the DCIEM Map-
type of an utterance in spoken dialogue by using automaticallask corpus [1]. This is a corpus of spontaneous goal-directed
extracted suprasegmental information. For this task, we presedialogue speech collected from Canadian speakers. This Maptask
and compare three stochastic algorithms: hidden Markov modaorpus was chosen as it is readily available, easy to analyse, has a
els, artificial neural nets, and classification and regression tredsnited vocabulary and structured speaker roles.

These models are easily trainable, reasonably robust and fit into

the probabilistic framework required for speech recognition. UtThe DCIEM corpus is fully spontaneous dialogue speech. 20 dia-
terance type detection is dependent on the assumption that diffégues (3726 moves) are used for training the system and 5 (1061)
ent types of utterances have different suprasegmental charactefff@- testing. None of the test set speakers are in the training set,
tics. The categorisation of utterance types is based on the thedr§- the system is speaker independent. The two participants in
of conversation games and consists of 12 move types (e.g. reglie dialogue have different roles called thiwer and follower.

to a question, wh-question, acknowledgement). This utteranéeenerally thegiveris giving instructions and guiding ttellower

type detector is used in an automatic speech recognition systdffough the route on the map. Due to the different nature of the
to reduce the word error rate. roles, each participant has a different distribution of moves.

The corpus has been analysed using the theory of conversational
1. INTRODUCTION games first introduced by Power [6] and adapted for Maptask dia-

This paper describes a method of automatically detecting the typgues in Carletta et al. [3]. The Games Analysis for the Maptask
of an utterance, using only prosodic information, for use in an alEOTPUS consists of six gamemstructing, Checking, Query-YN,
tomatic speech recognition system. Suprasegmental features &gery-W, ExplainingndAligning. The games consist of initiat-
automatically extracted and used to train a stochastic model 9 moves ipstruct, check, query-yn, query-w, explain and &ign
each of 12 utterance types. However, there is not always a or@?d non-initiating movesacknowledge, clarify, reply-yes, reply-
to-one mapping of intonation and utterance type, for example, ¥ reply-w, ready

yes/no question frequently has a high boundary tone, but some-

times has a low one. As long as each utterance type has different 3. SYSTEM ARCHITECTURE

distributions of observed suprasegmental features in the training . . . )
data, the stochastic models for each move type will differ. Wheﬂl_%'s paper describes one module in the automatic speech recogni-
confronted with a set of prosodic features of a previously unsedffn System described in [9]. In order to reduce word recognition
utterance, we can calculate the likelihood that each of the mo&!TOF One can take advantage of certain regularities in syntax and
els produced it. These likelihoods are then used to determine tjgxical distributions associated with different utterance types. For

probability of each utterance type, given its suprasegmental fe§¥@mPple, a yes/no question frequently starts with "Do you have
tures. ...". Language models are used in Automatic Speech Recognition

systems to constrain the number of word recognition possibili-
This paper investigates and compares the effectiveness of thié@s. Move specific language models are more effective at this
different stochastic models for the task described above, naméegsk as they have a smaller variation of possible word sequences
hidden Markov models (HMMs), classification and regressio@nd hence lower perplexity (c.f.[9]).

trees (CART) and artificial neural nets (ANN). ) . .
The appropriate language model is chosen by calculating the most

The utterance type detector is used in an automatic speech recilsely move type (M) given the suprasegmental features of the
nition system to select a specific language model thus reducindterance (), i.e. the utterance with the highest posterior proba-
word error rate. As well as applications in automatic speechility, P(M|I). To calculate this, one has to calculate the prior
recognition systems, an utterance type detector can be usedpii@bability of the moveP (A1) and multiply it by the output of the
human-computer dialogue systems, for example to determidielihood modelP(I|A7), formalised in the Bayesian formula:
whether the conversation agent is being asked a question or not,
Other applications include automatic summarisation and machirfe(M 1)
translation of conversations.

= P(M)P(I|M)

A dialogue modelis trained to predict the prior probability,
P(M), of sequences of moves. For instance, a query followed



Automatic Prosodic recognised by an algorithm described in [8]. Intonation events are
Feature Bxtrection categorised as: a (pitch accent), b (boundary tone), and ab (for
when an accent and boundary co-occur). The system is trained
on the data described in section 2, hand-labelled for intonation
events. A single context independent hidden Markov model is
Acoustic Didlogue Stochastic Prosody trained for each of the event types (a, b and ab), using as observa-
uneence Mode Modd tions FO and rms energy at 10ms intervals, together with standard
rate of change and acceleration measures (“deltas”). The means
and variances for each speaker’'s FO and energy are calculated and

Combined Move used to normalise the data for that speaker. Once trained, the
Detector system is run by using the HMMs for each label in combination
l with a bigram model representing the prior probabilities of pairs
of labels occurring in sequence. The viterbi decoding algorithm
L“::VQS"*”;; is used to determine the most likely sequence of labels from the
guegemo acoustics of the utterance being recognised. This system identifies
l 86.5% of the hand-labelled events correctly.
Improved Word
Error Rete To capture the characteristics of the intonation events, each one

is parameterised in terms of 4 continuous variables, knowiltas
Figure 1: System architecture of an automatic speech recognitiop@rametersi8]. These arestart FO (in Hertz), which is the FO
system using utterance type specific language models value at the start of the everamplitudeof the FO excursion of

the event (Hertz)duration(seconds); antlt. Tiltis a continuous

dimensionless parameter expressing the shape of the event. The

. . tilt parameter has arange of -1 to 1, where -1 is pure fall, 1 is pure

by a response, followed by an acknowledgement is more likeljse and 0 contains equal portions of rise and fall. The values of
than three acknowledgements in succession. A unigram is thgs 4 parameters are calculated automatically given the approxi-
simplest type of dialogue model, this reflects the likelihood of gnte ocation of an event and the FO contour. The mean and stan-
move given its distribution in the training dialogues. The diayarq deviation of each tilt parameter (excluding tilt) is calculated
logue model that has the best predictive power (i.e. reduces thg oach speaker. These are used to normalise the parameters for

perplexity of the test set the most) is a 4-gram model. This USgs,ch event in order to reduce speaker variation effects.
the identity of the current speaker and the speaker of the previous

move, and the last move of the previous speaker. 5. STOCHASTIC MODELLING OF

In separate experiments, three types of likelihood models SUPRASEGMENTAL FEATURES

(HMMs, CART and ANNSs) are used to model the different

prosodic characteristics of the move types. These are used to cal-1.  Hidden Markov Models

culate the likelihood of a set of observed suprasegmental features

for each move typ@ (I|M). Each of these three models are dis-Each move has a sequence of intonation events. We model these

cussed and their effectiveness for the given task compared. ~ Sequences by using a separate state for the beginning, middle and
end of utterances. We usehadden Markov modebecause the

As described in [9] and [4], the model trained on suprasegmerstate sequence is not deterministically recoverable from the ob-
tal features is used in conjunction with a move detector traineservation sequence. By using a viterbi decoder at run time, the
on acoustics. The recogniser is run once and the output word seest probable state sequence is determined, given the observa-
quence is used to estimate the likelihood of a move. A viterttion sequence. The HTK, hidden Markov toolkit is used to train
search finds the most likely path through the dialogue modehnd test the HMMs [11]

given the observations from the suprasegmental and acoustic

models. The probability of a sequence of moves is the produdthe parameterised events form 4 component observation vectors
of the transition probability (given by the dialogue model) and for continuous density hidden Markov models, with one model for
the state probabilitywhich is the weighted sum of the prosodic €ach of the 12 move types. The model consists of 3 states with
and the acoustic models. By Varying these Weights one can p|atf@.n5iti0na| arcs as illustrated in figure Pbservation probabil-
more emphasis on one or the other models. The remainder §€s (b;(o+)) specify the likelihood of a state emitting an event,
this paper reports the best method for maximising the accuracy ¥fhose tilt values are described by the continuous density function
the likelihood estimation model trained on prosodic features, thugssociated with that state. The observation density function is a

improving move detection accuracy and therefore reducing wor@component Gaussian mixturdransitional probabilities(a:;)
recognition error. are associated with the arcs between each state and determine the

state transitions, depending on the position in the utterance.

4. INTONATION EVENTS AND TILT HTK [11] allows observation vectors to be split up into a num-
PARAMETERS ber of independent data streams. These streams can be weighted,

. enabling one to posit more importance on one or two of the pa-
All three stochasﬂc_model; (HMM, CART and ANNS) use fea'rameters. The best results are obtained by combining start FO and
tures extracted fronmtonation eventswhich are automatically



State 1 State 2 State 3

Feature Type| Usage (%)
at a2 a3 Duration 0.47
FO 0.41
RMS Energy| 0.12

al2 a23

Table 1: Discriminatory features and type usage in move classifi-

cation
bloD)  ble2) b2(03) 53(04) terance type, similar calculations are made for the last and penul-
timate 200ms of the utterance (e.g. mean RMS energy in the
Observation Sequence  a a a b end region normalised using the mean and standard deviation of
RMS energy for the whole utterance). Other features are calcu-
Observation Vectors E E E E lated by comparing feature values for the two end regions and the

whole utterance (e.g. ratio of mean FO in the end and penulti-
mate regions, difference between mean RMS energy in the end
Figure 2: A three state, left-to-right HMM and penultimate regions). In addition to these features the least-
squares regression line of the FO contour is calculated for the last
200ms and for the whole utterance. This would capture intonation
FO amplitude as one stream and giving it slightly more weightindeatures such as declination over the whole utterance, and bound-
than duration and tilt which are combined as a second stream. ary type over the final part of the contour.

The hidden Markov models are trained using the Baum-WelcH is useful to know which features are the most discriminatory
algorithm to provide transition and observation probabilities foin the classification of the moves. As the tree is reasonably large
modelling their particular training data. Once trained, the HMMgvith 30 leaves, interpretation is not straightforward. For simplic-
are run over each utterance and the HMM that matches the uttéy, We group the features into 3 general categories of duration, FO

ance the closest is chosen as the answer. and energy. Table 1 gives tlieature usage frequendgr these
groups of features. This measure is the number of times a feature
5.2. Classification and Regression Trees is used in the classification of data points. It reflects the position

in the classification tree as the higher the feature is in the tree, the
This section describes work inspired by the use of classificatiomore times it will be queried. The measure is normalised to sum
and regression trees trained for utterance type detection on a laigel for each tree.
database of telephone conversations, reported in [7]. They use ) ) )
similar features to train a classification tree to differentiate 5 utPifferent moves types by their nature vary in length, therefore it
terance types with reasonable success. is not surprising that duration is highly discriminatory in classify-

ing utterance types. For example, ready, acknowledge, reply-yes,
54 suprasegmental and durational features are used to constrigfly-n and align are distinguished from the other moves by the
tree structured classification rules, using the CART training algdop node which queries a duration feature. This duration feature,
rithm [2]. The trees can be examined to determine which featurgggrnumframes, is the number of frames used to compute the
are the most discriminatory in move classification. The outputO regression line for a smoothed FO contour over the whole ut-
of the classification tree is the probability of the move given théerance. This is comparable to the study reported in [7], where du-
features, i.e. the posterior probabiliB(M|I). In order to com- rational features were used 55% of the time and the most queried
pare the trees with the HMMs, the likelihood of observing a set deature was also regrumframes. This feature may be a fairer
features given a certain move(I|M), is calculated by dividing measure of actual speech duration as it excludes pauses and si-
the output of the tree by the output of the unigram, i.e. the priokences.
probability P(M). An alternative method is to train the tree on

data containing equal numbers of moves. Both methods produd&€ FO features that come highest up in the tree are FO mean in
similar results. the end region, maximum FO and tilt value of the last accent. This

indicates that the FO near the end of the utterance contains impor-
The suprasegmental features are automatically extracted from ttgt linguistic information for the distinction of utterance types.
speech signal and used to train the classification tree. For each
move the last three accents (if present) are automatically detectbd3. Neural Nets
and their 4 tilt parameters extracted and normalised, as described
in section 4. The other prosodic features are based on FO (elie 54 features described in section 5.2 are used as input for a
max FO, FO mean and standard deviation), rms energy (e.g. eneiifjjee layer perceptron neural network. The input layer consists of
mean and standard deviation) and duration (e.g. number of fram24 nodes, one for each of the features which are normalised to fall
in utterance, number of frames of FO). These features captufgtween 1 and -1. The network contains one hidden layer of 60
general characteristics of the utterance, for example the standafgits. The output layer consists of 12 nodes, one for each of the
deviation of the FO represents pitch range. moves. Whichever node has the highest activation value is taken
as the most likely move type. The net is trained with stochastic
As the final part of the intonation contour is often indicative of ut-back propagation algorithms using a cross entropy cost function.



HMM | CART | ANN move type (acknowledge) in different contexts. Training context
unigram on all moves 42 44 43 specific models, however, are problematic due to the sparseness
unigram on initiating moveg 36 39 36 of the data.
unigram on other moves 48 49 50
Z-gram on all moves 64 63 62 One could c_i|V|de the dialogue |nto_ a set of utterance types, Wh_o_se
Z-gram on initiating moves | 56 55 52 corresponding Ian_guage models improve the speec_h recognition
Z-gram on other moves 75 71 70 the most. There is no guarantee, however, that this set will be

meaningful in dialogue terms or be distinguishable in terms of
suprasegmental characteristics. The merging and splitting of the
move types to optimise intonation similarity is a possible way to
improve move recognition (e.g. mergiadjgn andchech. This

The system used to train and test the neural nets is the Stuttg@uld only be of use, however, if the resulting language models
Neural Network Simulator [10]. improve the word error rate.

Table 2: Percentage of moves correctly recognised
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