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ABSTRACT

This paper describes ongoing research on robust spo-
ken language understanding in the context of the Verbmobil
speech-to-speech machine translation project. We focus on recent
developments in the processing steps which map a word lattice to
a semantic representations. The approach described firstly applies
speech repair correction to word lattices. Four analysis methods
of varying depth are then applied in parallel to the normalized
word lattices, producing output for sub-portions of the lattice in
the same semantic description language, the VIT format. These
fragmentary analyses are stored and combined by a further pro-
cessing component, which finally selects a sequence of semantic
representations as a result.

1. INTRODUCTION

In this paper, we describe relevant modules of the linguis-
tic analysis component of the forthcoming Verbmobil speech-to-
speech translation system [11]. In particular, we discuss Verbmo-
bil’s robust multi-parser architecture and how the different parsers
are controlled, the treatment of utterances containing self-repairs,
the integration of partial analyses resulting from recognition er-
rors or ungrammaticalities, and the selection of a result from com-
peting hypotheses. The overall aim is to show how we attempt to
make Verbmobil more robust against the typical problems of pro-
cessing spontaneous speech.

These efforts to make the system more robust are applied at
different stages of processing. The module for the treatment of
self-repairs takes as input the word hypothesis graph delivered by
the speech recognizer and annotated by the prosody component.
It adds new edges bridging possible self-repairs in the graph. Inte-
gration of partial analyses can be viewed as a post-parsing process
(although technically it takes place in parallel with parsing). The
use of multiple parsers, each with its own strengths and weak-
nesses, taken together with a selection process that chooses from
the different results available, further improves robustness. The
overall flow of data can be seen in figure 1.

Verbmobil employs a semantic transfer approach to machine
translation [6], i. e. an input utterance is syntactically and seman-
tically analyzed, the resulting source language semantic represen-
tation is mapped to a target semantic representation, from which
a target language utterance in generated and synthesized. Apart
from this, alternative strategies such as example-based and sta-
tistical translation are explored. In this paper, we focus on the
linguistic analysis for the transfer-based processing.

2. TREATMENT OF SELF-REPAIRS

From an architecture point of view the multi-parser architec-
ture makes a preprocessing of word lattices necessary. Otherwise
given a perfect acoustic word recognition, in cases of speech
repairs the grammar based analysis methods would never pro-
duce an output. The “repair correction” step itself relies on the
classical treatment of speech repairs asReparandum(RD), In-
terruption point (IP),Edit Term (ET) andReparans(RS) as in
“[Monday]RD IP [no]ET [Tuesday]RS”. If such a word sequence
were uttered, in the ideal case the corresponding sequence of
word hypotheses [Monday no Tuesday] would be replaced by
just [Tuesday]. The word lattice correction of repairs divides into
two phases of search, given a preprocessed word lattice as input,
where word boundaries are classified according to prosodic cues
whether they might constitute a word boundary immediately fol-
lowing a reparandum1 .

First the word lattice is collapsed to a POS2 lattice. Second a
set of nodes prosodically marked as interruption points is selected.
For each of these nodes a probabilistic model on POS sequences
is used to classify the incoming and outgoing word sequences into
RD, ET, and RS. We use a specialized tag set for that step which
covers semantic features as well according to their linguistic rel-
evance for the repair phenomenon. The last phase — the editing
step — monotonically adds new edges to the word lattice span-
ning the original RD ET RS sequences but being labelled only
by the RS label. We are currently concentrating on improving the
POS-based classifiers which are used to detect the scope of the
self-repair. Within the Verbmobil corpus with spontaneous nego-
tiation dialogues about 20% of the utterance exhibit self-repairs.
We can currently isolate about 94% of the reparanda correctly
given the correct string and irregular boundary, if we restrict our-
selves to the self-repairs with less than five words (95% of the
corpus).

3. INTEGRATED PROCESSING

In the current state of the architecture four different parsing
methods are incorporated in the “Integrated Processing” module
[10]. All of these produce semantic representations in the same
formalism (see 4), which can be combined with each other.

1. The first method is adeep linguistic HPSG parser[8], which
is not very robust but produces very detailed descriptions for
its inputs.

2. The second method is aprobabilistic context free grammar
LR-parser, where the grammar and the stochastic parame-
ters are derived from a tree bank. The grammar is supplied

1The prosodic classification component which we use is described
in [2].

2Part of speech.
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Figure 1: The relevant part of the system architecture.

with a semantic construction mechanism. However, the rep-
resentations it produces are usually less detailed than those
of the HPSG parser. In many cases where the HPSG fails the
probabilistic grammar still produces an interpretation.

3. The third method is achunk parserbased on cascaded finite
state automata as described in [1], producing rough interpre-
tations on analysable fragments of the input.

4. As a fall-back an HMM-based dialogue-act recognizer is
used as the fourth method. This method produces a template
intepretation for the dialogue act recognized in each input
where special slots like weekdays and clocktimes are filled
by additional rules [9].

The backbone of the module is an A*-lattice-search with a
trigram-based rest cost calculation [7] which guides the search
of all the parsing methods through the input lattice. The parsing
methods can be run on a single processor machine (using its own
scheduling heuristics) or simultaneously on multiple processors.
Since the increasing robustness of the methods (increasing from
HPSG to dialogue-act based analysis) corresponds to their de-
creasing precision and computational resources needed, the “In-
tegrated Processing” module as a whole can be parametrized to
show an anytime behaviour.

4. INTEGRATION OF PARTIAL
ANALYSES

In many cases, no parser will find an analysis spanning the
whole input utterance. This may be due to speech recognizer er-
rors, spontaneous speech phenomena which have not been caught
earlier, and ungrammaticalities in the utterance itself. Although
a complete analysis would be preferable, the parser can usually
come up with a set of partial analyses in these cases which can
often be assembled to yield larger, more meaningful units. This is
the basic idea of what we callrobust semantic processing[14, 15].

Robust semantic processing operates as a background process
to the analysis performed by the parsers. While the parsers ex-
amine and analyse the paths in the word hypothesis graph they
receive from integrated processing, they produce partial analyses
of these, covering part of the paths. These partial results are sent
to the robust semantic processing component. Since all parsers
deliver their results in the common VIT format, the results are

comparable and combinable.

The VIT format (VIT stands for Verbmobil Interface Term, cf.
[4]) has been developed as a common semantic representation for-
mat for the different Verbmobil grammars and parsers. It can be
seen as a theory-independent version of underspecified semantics
[5]. An example of a VIT is given in figure 3.

The task of robust semantic processing then consists of three
subtasks:

1. store the partial results in a chart-like data structure (which
we call aVIT Hypothesis Graph(VHG),

2. combinethe partial results on the basis of rules, yielding new
entries in the VHG,

3. selecta result from the VHG, i.e. a sequence of partial results
(or a complete one, if available), if no parser was able to find
a spanning analysis in the time available.

Consider as an example the utterance

(1) Wir treffen uns in den n¨achsten zwei Wochen.
(We (will) meet during the next two weeks)

and assume that the speech recognizer dropped the prepositionin,
as it is just a short word. In this case, the parser will analyze the
input as two fragments, a sentence (wir treffen uns) and a nomi-
nal phrase (den nächsten zwei Wochen). These two fragments are
stored by the robust semantic processing. A rule stating that a tem-
poral NP such asden nächsten zwei Wochencan be re-interpreted
as a modifier is applied, entering a new edge into the chart. This
temporal modifier edge is then combined with the edge for the
proposition, yielding a complete and accurate analysis of the com-
plete utterance.

The resulting VIT hypothesis graph is shown in figure 2. The
edges are numbered, the numbers correspond to the temporal or-
der in which they were added to the chart. The edges are anno-
tated with the substring(s) they correspond to, as well as with
an internal score and a list (in PROLOG notation) of the numbers
of the edges they have been built from. E. g., edges 89 and 106
have been delivered by a parser, since they have not been built
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3: wir  (168.0) [] 1: den  (195.0) []2: uns  (195.0) [] 54: zwei  (360.0) []47: wochen  (775.2) [39]

39: wochen  (783.0) []

30: treffen  (1023.0) [] 74: naechsten  (1680.0) []

63: zwei + wochen  (2184.9) [54,47]

90: zwei wochen  (2208.0) []

105: den naechsten  (3024.0) []

106: wir treffen uns  (3480.0) []

73: naechsten zwei  (3599.0) []

64: den naechsten zwei  (5475.0) []

83: naechsten zwei wochen  (7665.6) [75]

75: naechsten zwei wochen  (7743.0) []

89: den naechsten zwei wochen  (10403.0) []

86: den + naechsten zwei wochen  (10298.0) [1,83]

98: den naechsten zwei wochen  (10299.0) [89]

113: wir treffen uns + den naechsten zwei wochen  (23327.1) [106,98]

Figure 2: The VIT hypotheses graph forWir treffen uns (in) den n¨achsten zwei Wochen.

from another edge (their list of components is empty:[] ), while
edge 98 has been built by robust semantic processing from edge
89 by applying the type raising rule mentioned above. Edge 113
results from applying this modifier to the proposition associated
with edge 106. This edge is selected as the result.

The processing of the VHG is agenda-based. This allows us to
give preference to analyses which span a larger portion of the in-
put and/or which have been produced by a parser (as opposed to
those produced by robust semantic processing). Since the parsers
tend to produce analyses for smaller parts of a WHG path be-
fore they deliver analyses for larger chunks, these smaller bits are
only considered as long as no larger analyses have been delivered.
E. g., the parser first found analysis for the pronounwir (edge 3)
as an NP before it delivered a result for the sentencewir treffen
uns(edge 106).

In addition to selection of a resulting VIT sequence as de-
scribed in 5, the robust semantic processing component must de-
termine when it is appropriate to make such a selection. Without
external constraints this decision would simply amount to deter-
mining when all the parsers have delivered the information they
have, either a spanning analysis or a clear indication of parse
failure. However, the time constraints of the system as a whole
require a more flexible strategy, since there is a sliding scale of
global parameters determining intended performance.

The default strategy is to wait for the most detailed analysis
which would come from the HPSG parser and would necessarily
be a single analysis spanning the whole segment input. A more
efficient option would be to take the first parser that claims to
have processed up to the end of the segment as a cue to retrieve
the best available analysis from the VHG. The results from the
statistical or chunk parsers may, actually, consist of a sequence of
grammatical fragments.

As the VHG also has anytime properties it would be conceiv-
able to apply an absolute time limit, or one relative to the length
of the input, but that would provide no guarantee that any single
parser has processed the input and, hence could lead to too great a
degradation in output quality. The objective here is to get the best
out of the available resources under time constraints.

5. SELECTION OF RESULTS

The way the VIT hypotheses are combined to VIT strings cov-
ering whole utterances is a systematic adaption of methods known
from lattice parsing. Like word hypotheses, VIT hypotheses have
start and ending points, scores and symbolic contents. As we have
learned from many approaches on word lattice parsing like [13],
[12] and others, hybrid stochastic-symbolic approaches, like [3],
perform well for those problems.

In search of a good spanning sequence of VITs we select VITs
to combine on the basis of a stochastic model on VITs and com-
bine the VITs themselves using symbolic rules. The main differ-
ences with respect to word lattice parsing are two properties of
VIT hypotheses. Unlike word hypotheses which are produced by
one decoder VITs come from four different decoding processes,
whose internal scores are hardly comparable. Actually only two of
those processes use probabilistic models although there is, in prin-
ciple, no problem with enriching the remaining models — HPSG
and Chunk Parsing — with derivation probabilities. The acoustic
scores assigned to the word hypotheses, which belong to one VIT,
turned out to be of little help, since in many cases competing VITs
cover the same sequence of words. In order to have some empir-
ical source of information we designed a special VIT-N-Gramm
describing the probability of VIT sequences. It is used in com-
bination with some heuristics preferring longer VITs which are
more likely to represent a correct analysis. In addition, we give
increasing penalties to the less precise models. The maximization
formula is roughly (neglecting some details) as:

V = maxVn
0

" X
0�i�n

LogP (Vi) + L(Vi) +W (Vi)

#

where L stands for a length penalty and W for a penalty for cer-
tain sources (parsing methods). In first tests some empirically de-
termined length and source weights led to acceptable results. In
the future, it is planned to adjust the weights using optimization
procedures on ideal outputs.



vit( vitID(sid(114,a,ge,25,66,1,ge,y,semantics), % Segment ID
[word(wir,r6,[l154]), % WHG String

word(kommen,r7,[l105])]),
index(l159,l106,i105), % Index
[decl_imp_quest(l160,h103), % Conditions

kommen(l105,i105),
pron(l154,i106),
arg1(l105,i105,i106)],

[in_g(l160,l159), % Constraints
in_g(l105,l106),
leq(l106,h103),
in_g(l154,l106)],

[s_sort(i106,human), % Sorts
s_sort(i105,move_sit)],

[prontype(i106,sp_he,std)], % Discourse
[num(i106,pl), % Syntax

pers(i106,1)],
[ta_mood(i105,ind), % Tense and Aspect

ta_perf(i105,nonperf),
ta_tense(i105,pres)],

[] % Prosody
)

Figure 3: An example of a VIT for the utteranceWir kommen.

6. CONCLUSION

We have presented an architecture which defines the mapping
from word hypotheses to semantic representations. The architec-
ture is fully implemented in the forthcoming version of the Verb-
mobil speech translation system, but not yet well tested. The key
strategy is to apply multiple parsing strategies in parallel on pre-
processed portions of the input and producing a new lattice per
utterance where the atomic units are semantic descriptions. This
architecture delays the search and decision for the final recog-
nition result until the semantic processing level. This leads to a
more robust overall behaviour and brings an effect of dynamically
changing the “depth” of analysis.
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