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in 1991 for optical character recognition (OCR). Later
S.Y.Kung [4] also applied the OCON architecture to OCR,
achieving a training accuracy of 99.5% compared with 94%

In this paper a comparative study between One-Class-OrffRm a conventional MLP_.' Sgch architectures_ have also been
Network (OCON) and Multi-Layered Perceptron (MLP) neurabsed _for texture CI§1$S|flpat|on, Electr_ocard|ograph (ECG)
networks for vowel phoneme recognition is presented. T@naly&s and t'he cIaSS|f|cat|pn of mand_arln_speech syllables and
OCON architecture, first proposed by 1.C.Jou et al 1991, {golated English words with a hybrid Time Delay Neural
similar in design to a conventional feed-forward MLP, only each/€tworks (TDNN) and OCON structure [5].

class had its own dedicated sub-network containing a single
output node. Conventional MLPs usually consist of fully-
connected nodes which not only result in a large number of
weighted connections but also create the problem of cross-class
interference. Using vowel phoneme data from the DARPA
TIMIT corpus of read speech, MLP and OCON architectures
were trained and the relative effects of recognition and
convergence rates during both intra and inter-class adaptation
tested. The OCON showed an increase in the convergence rate
of 273% and an improvement of adapted recognition rates
against the MLP of over 12%. However, due to the isolated
nature of each OCON class, it was unable to utilise inter-class
information. This resulted in a recognition rate reduction of
over 6% for unadapted phonemes during adaptation of
remaining vowels, compared with the MLP results.
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1. THE OCON

(b)

A large fully-connected network can potentially contain many
hundreds of neuronsgach onnected via weights to many

others.

This can make the training and adapting of such a

network a long and difficult task.

In addition, fully connected

networks are prone to cross-class interference.

Cross-class

interference occurs when adapting towards a single class in a
multi-class network, inevitably altering shared weights. As the
network gets larger the interference increases, drastically
degrading the convergence rate of the shared weights due to the
influence of conflicting signals. This can lead to, after
adaptation towards a single class, the impaired classification for
the remaining classes within the network. To eliminate these
problems, 1.C.Jou et al [2] proposed a new neural network
architecture called the One-Net-One-Class. The same principle

INPUT
was later taken on by S.Y.Kung[3][4], who named theFigure 1: (a) A fully-connected MLP architecture.

architecture the ‘One-Class-One-Net’ or the ‘OCON’ for short.
The OCON is similar in design to that of a conventional MLP
(see Figure 1a) only each class has its own dedicateaes
containing a single output neuron (see Figure 1b). Each OCON
subnet is specialised for distinguishing its own class from other
patterns, resulting in fewer nodes being required in the hidd&dl the speech data used during the comparative study was
layers for each class. 1.C.Jou first used the OCON architecturebtained from the DARPA TIMIT corpus of read speech [1].
12 vowel phonemes spoken by male speakers from the TIMIT

(b) An OCON Neural Network Architecture

2. THE SPEECH DATA



dialect region 7, the western geographical area of the U.S, wenedelled with fully connected adjoining layers, except for the
used for training and testing the ANN architectures. Voweiidden and output layers of the OCON architecture.

phonemes were specifically chosen since they are the most

spectrally well defined of all phonemes making them more

easily and reliably recognised and ideal for a comparative study. (@)

In addition, tq avoid large deviations between phone_mes during (8x11) InputNeurons

the comparative study, phonemes from speakers with the same /—/\ (3x5) Hidden Neurons

gender and dialect were selected. Male speakers from dialect 1 Output Neurons for

region 7 were selected because of the availability and good P each class
representation of training and testing data available from this N

group. However, of the 13 vowel phonemes available, using the
ARPABET representation [6], vowel /JUW/ was not used due to
the limited number of utterances leaving the 12 vowel
phonemes, /IY/, /IH/, IEY/, IEH/, IAE/, [ER/, IAX/, IAH/, [UH/,
/OW/, /AO/, /AA/l. During the experimentation it was not only
of interest to test the effect of recognition rates and convergence

on the adapted vowels but also the effect the adaptation had on b
ot : (b)
the remaining unadapted vowels. Unfortunately, testing the
effects of inter-class adaptation on 12 vowel phonemes is a very (3x5) Hidden Neurons
labour intensive procedure and so the phoneme groups were for each class1 output Neurons for
A each class

reduced further. They were split into 3 distinct groups with
respect to the tongue-hump position in the oral cavity during
their production, ‘front’, 'middle’, and ‘back’. They were
grouped in this way since phonemes from the same tongue-
hump group show some acoustic similarities [7]. The front
vowel phonemes were /IY/, /IH/, /EY/, /EH/ and /AE/, the
middle vowel phonemes were /ER/, /AX/ and /AH/, and the
back vowel phonemes were /UW/, /UH/, /OW/, /AO/ and /AA/.
Using ‘Speech Tools’ [8] the relevamthoneme data was
extracted from the recorded 16kHz speech files within the
TIMIT corpus. Each phoneme file was pre-emphasised, to
compensate for the -6db/octave roll-off of voiceeceh and
windowed using 8 over-lapping hamming windowsach
representing 16ms of speech. The speech data in eadbwvi
was used to generate 12 linear predictive coefficients (LPCs)
which were normalised by dividing by the first. The first
coefficient could therefore be eliminated since it was alwaysigure 2: (a) Fully connected MLP architecture.
equal to one. This left 11 LPCs for eacmeow resulting in a (b) Fully connected OCON architecture.
total of 8x11=88 coefficients representing each vqveneme.
Linear prediction with its simple coding and well documente
behaviour was specifically chosen as the most appropriate fo
of speech pre-processing since all experimentation was primar, %
concerned with the performance of the ANN architectures.

(8x11) InputNeurons

?:'ach network was trained with male TIMIT training set from
lect region 7. The weight and bias values within the
tworks were initially randomised and the standard back
propagation algorithm used to train the networks, producing the
six ‘base-classifiers’ necessary for the experimentation. The
3. ANN ARCHITECTURES male TIMIT ‘test set’ for dialect region 7 consisted of 15 male
speakers. Since there was only interest in intra-speaker effects
To test the performance of the OCON architecture on the vowghd not inter-speaker effects, all the speech data from every test
phoneme spech data, a comparative study with the morepeaker was amalgamated and categorised with respect to its
conventional MLP was set. The OCON and MLP architecturgshoneme content. The networks were then ready for adaptation
were represented by three networks each, quoreling to the and testing, but before that could occur, a single common back-
‘front’, ‘middle’ and ‘back’ tongue-hump groups of theesigh  propagation learning-rate for both the MLP and OCON
data. For eacphoneme group the MLP and OCON networksetworks had to be found. This was achieved by training one of
(see Figure 2) were modelled using the Stuttgart Neurghe MLP and OCON networks with various learning rates. A
Network Simulator (SNNS) [9]. All the networks contained thdearning rate of 0.5 was selected since it offered both networks
same number of input nodes, 88, dictated by the number of ingegt convergence without any instabilities.
coefficients representing each speech utterance. The total
number of output nodes faach network was dependent on theEach of the six base-classifiers was adapted and tested using the
phoneme group, five phoneme classes for the front and back ategt set.” Each network was adapted towards one of its relevant
three phoneme classes for the middle. The six networks, wiphoneme classes for a total of 100 cycles, during which 7 result
every node using the sigmoidal activation function, wergnapshots were taken at 1, 3, 5, 10, 20, 50 and 100 cycles. Due
to the non-linearity of network adaptation, the number of cycles



between each result snapshot increaseddduse a graph that
offered a clear picture of the network’s behaviour. The results
taken at each snapshot were the recognition rates of both the
adapted phonemes and the remaining unadapted phonemes
within the same network. After adapting for 100 cycles towards
eachphoneme class, the weights and bias’ wittérch network

were reset to their initial base-classifier values ready for the next
adaptation procedure involving another phoneme class.

4. RESULTS

Comparative results for the MLP and OCON architectures were Adaptation Cycles

obtained for adaptation towards each of voplebneme class Figure 3(a): Average Recognition Rates for All Adapted Vowel
and the effect on the remaining unadapted vowel phonerRéonemes for an MLP and OCON Network

classes within the same networks. 2 graphs were produced
containing the averaged data from all the vowel phonemes for __
the adapted and unadapted phonemes recognition rates (seeﬁ
Figure 3(a)(b)). As well as recognition rates, another area of &
interest was each network’s convergence rate. The convergenceg
rate for each of the 2 averaged data graphs was calculated by §
differentiating the recognition-rate data (calculating the distance £
between adjacent rates). However calculating the convergence

rate in this way was viewed as being unrealistic since the closer ‘ ‘ ‘
the recognition rates reach the perfect godl@fi%, the greater o6 o ® o
the significance of recognition improvement. To reflect this the
convergence rate y was calculated using equation :

=
o
o

Al
)

[©2 3o
o O

N
o

Recognition Rate (%
N
o

35
30
25
20

Recognit

s o o g

- N Te] S
Adaptation Cycles

Figure 3(b): Average Recognition Rates for All Unadapted
Vowel Phonemes for an MLP and OCON Network
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wherey,, andy,.; are two adjacent recognition rates. The term - 1

1 in equation 1 was used for normalise the graphs so that wgg
positive values indicated positive convergence and negative &

values negative convergence. The 2 convergence rates graphs 3 0.6
were generated were for all the adapted vowel phonemes (see §0.4
Figure 4(a)), and all the unadapted vowel phonemes (see Figure o
4(b)). Figure 3(a) shows that the OCON networks show a clear é

improvement for the recognition rates of adapted vowel 0- ‘
phonemes over the conventional MLP networks. On average, 0.5 2 4 75 15 35 75
for all vowel phonemes, the experimentation shows a 12.3% Adaptation Cycles

increase in recognition rates for the OCON networks [10][11Figure 4(a): Average Convergence Rates for Adapted Vowel
This result echoes the improvements shown in other datthgonemes for an MLP and OCON Network

classification systems utilising OCON architectures [2][3][4][5].
Furthermore, the OCON architecture not only increases the
adaptation rate but also reduces the processing time necessary ~ 9-34
for each adaptation cycle due to the reduction in network 0.32

weights. This is shown in figure 4(a) with the increased rate of E 03 ¢

convergence for each OCON network, offering78% increase 3 0.28 7

against the MLP for adapted phonemes. However, the OCON g 026 7 —e—MLP
architectures as they stand, deal badly with inter-class = 0.24

adaptation.  Although the rates of convergence for both 2 022 ¢ —#—OCON
networks are roughly the same, figure 4(b), figure 3 (b) shows & 0.2 ‘ ‘ ‘ ‘ ‘ ‘
that the OCON networks offer worse recognition rates for 0.5 2 4 w15 35 75
unadapted vowel phonemes over the conventional MLP Adaptation Cycles

networks. From figures 3 (b) we find that the average drop in

recognition rates for the OCON networks, compared with theigure 4(b): Average Convergence Rates for Unadapted Vowel
MLP networks, is 6.3%. Phonemes for an MLP and OCON Network



5. CONCLUSION [8] Speech Tools User Manual, Center for Spoken

Language Understanding, Oregon Graduate Institute of

As expected the OCON behaves better than the MLP when Science and Technology, August 1993,

adapting and testing the same phoneme. This is primarily due to
the individual networks in each OCON network being dedicated
to each class. Not only are there fewenrections and hence
weighted axes to train, but each network only has to deal with
information concerning a single class. As a result the OCON
not only reduces the processing time for each adaptation cycle,
but also rapidly increases the convergence rate. However, the
OCON architecture as it stands, deals badly with inter-class
adaptation. When adapting to a class, the OCON shows a lower
recognition rate for the remaining phonemes in the network
compared to that of the MLP. This indicates that there must
exist some common speaker information within all the classes in
a network which isn’t being exploited in the isolated networks
of the OCON. Although in many applications cross-class
interference can be a problem, MLPs compared to OCONs
appear to use it to their advantage for inter-class adaptation. As
a result an ideal network would be a hybrid OCON architecture
containing isolated networks for improved single class
adaptation but with some inter-class bonding to profit from any
common speaker information. However it would be important
that any hybrid OCON network should concentrate adaptation
only on common speaker information as adaptation towards
common class information could result in harmful cross-class
interference.
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