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ABSTRACT exist and this should be included in a model.

In this paper, we present a new technique for statistical modeks a step toward a real two dimensional model of speech, a new
ing of speech segments based on Markov random fields. Clagodel is proposed, derived from the multi-band approach, in which
sical and multi-stream HMMs are particular cases of this morghe interactions between frequency bands are taken into account.
general family of models. However, the Random Field Modeln the classical multi-band model, the hidden process defines a
(RFM) proposed here can be seen as an extension of the mufield X = {X; ,} wherek is the band index and the law of the
band HMM in which interactions between the frequency bandgrocessX is defined by the HMMs in each band. To allow for
have been added. In a first experiment, samples are drawn frdfeéquency interactions, the law for the field is changed and it is
different models and compared to real observations. This expesssumed thaX is a Markov random field and the hidden pro-
iment shows that the RFM is able to produce realistic samplasess model can be seen as parallel HMMs mutually interacting.
but a single HMM still performs better. Isolated word recogni-In other words, the state in which we are at titria bandk, de-
tion experiments stress the fact that more work must be done @nds on the states in the same band at timeg andt + 1 and
the RFM in order to reach the performances of classical hiddesh the states in the other bands at titmeSuch a set of depen-
Markov modeling techniques. For the moment, the RFM parandencies defines a neighborhood and, thanks to the Hammersley-
eters are estimated using a heuristic. We believe that a real magtifford theorem [3], the law ofX can be expressed in terms of
imum likelihood parameter estimation algorithm should improvénteraction potentials. Finally, the observations are modeled by
the results. The main advantage of this new model is that it caBaussian probability density functions associated to each state of
easily be extended since a model is defined by some local ifhe underlying HMMs using the classical hypothesis of condi-
teractions and the Gibbs potential functions associated to thogenal independence. The observations consist in filter-bank out-
interactions. puts. The formalism of this model, called Random Field Model
(RFM), is presented in section 2. The expected advantages of the
1 INTRODUCTION RFM are that it may be able to use some frequency information
that cannot be captured by HMMs thanks to the modeling of fre-
In speech recognition, many techniques have been proposedaguency band interactions. The state space of the hidden process
compute the likelihood of an observation given a statistical modé$ also more complex than with HMMs and may be able to model
(or a sequence of words). The most popular approach is basewre complex processes. The advantages of having a complex
on Hidden Markov Models (HMMs). In this approach, a hiddenstate space are clearly shown in [2] where factorial HMMs are
stochastic process (the Markov chain) is used to model the terused.
poral structure of speech while the probability density functions
associated to the Markov chain states model the frequency vafiie validate the pertinence of the Random Field Model, random
ability. More recently, an extension of this model to a multi-bandsamples of isolated words, drawn according to the law defined by
approach has been proposed [1]. It consists in dividing the signtile model, are compared to real observations using a Dynamic
into frequency sub-bands and in modeling each sub-band ind&me Warping algorithm. Finally, isolated word recognition ex-
pendently by a HMM. periments are carried out. The experimental protocol and results
are presented in section 3.
We see several limitations to those approaches. First, the HMM
approach can be seen as the superposition of two stochastic mod- 2 RANDOM FIELD MODEL
els, one for the time domain and one for the frequency domain.
To model both time and frequency variability simultaneously, 2.1 The model
real 2D stochastic model seems more appropriate. Secondly, the . ) . . ) N
multi-band HMM assumes the independency of the sub-bands./'}rS mentioned in the |ntroc_iuct|o_n, the hidden _f|eld IS _mOd' .
seems clear that such an assumption is intrinsically limitative. e ed as a Markov random field since only local interactions exist.
deed, some interactions between the frequency bands obviou 9mely,
PlXi = e k| Xt = Tjep) = P[Xek = wep]z(Vir)]



whereX; , denotes the fiel& without X; ,, andV; . the neigh- 2.2  Training procedure
borhood of sitgt, k), defined by:
A key problem in statistical modeling is the problem of parame-
Vie ={(t—1,k), (t +1,k), (t,1) VI # k} ter estimation. Unfortunately, no equivalent of the Baum-Welch

) . ) . Igorithm is available for maximum likelihood parameter estima-
x(V4,,) denotes the configuration of field X for the nelghborhoocﬁlOn of the REM. Since the model is strongly related to HMM

V4.x. Theprior probability for the field can be expressed in termsneuristic criterions can be used for trainin

: - L . g purposes. Indeed,
of Gibbs field and is given by equation 1 [3]. the model can be seen as parallel HMMs with the only differ-
ence that the behavior of a HMM is influenced by the behavior
of the HMMs in the other bands because of the horizontal in-
teractions defined in the RFM. Therefore, the parameters of the
In this equation( is the set of cliques defined by the neighbor-HMMs can be estimated independently for each band using the
hood system[/.(x) is a potential function associated to cliquestandard Baum-Welch algorithm. Due to the vertical potentials,
c and Z a partition function so thaP[X] is a probability mea- the coupling between HMMs in bandsand! is based on the
sure. A clique is a set of sites mutually neighbors. There are twoeasure
kinds of cliqgues associated to neighborhdqg,. The first one, 1 <
{(t — 1, k), (t,k)} reflects thenorizontalinteractions, that is the d(k,1) = 7 Z @tk — el
temporal nature of the process, and the secondohé), (¢,1)} =t
models the interaction between frequency bands. To define a rdhfW0 bands are synchronous, this measure should be small and
dom field model, one must express the potential functions assb'® Synchronization weighfi.; should be big to penalize con-
ciated with both kind of cliques. It can be shown that a HMmfigurations wherei(k, 1) is not small. This means thafk.; is
is a particular random field [3, 4], and therefore, the horizontd['Versely proportional td(k, [). An idea of whatd(k, ) should
potential functiond’("’ () are defined to reflect a Markov chain P€ for @ given model can be obtained by computing this measure

behavior in each band. For the cliqie — 1, k), (t, k)}, assum- along the Viterbi path on the training data. If such a measure is
ing thatzs_, x = i andze , = j, we have R denotedi(k, [) then f;; is heuristically defined as:

PIX =2]= Zexp— 3 Uila) ®

h k -_r
Ut(,k) (z) = az(,j) Fea = d(k )
Whereaﬁf}) = —Ina, if a;,; denotes the transition probability The hyper-parametey controls the relative contribution of the

in Markov chain corresponding to bakd It should be noted that horizontal and vertical interactions in the computationP6f|.

if a transition is not validi(e. a;,; = 0), then the energy is infinite If ~ is set to zero, then the model is simply a multi-band HMM.
and P[X] is null. We therefore have a barrier energy for unau-

thorized transitions in the Markov chain so that the Hammersley- 3 EXPERIMENTS
Clifford theorem is still applicable. Then, the vertical potential

functions allow for a control of the synchronization between tw%.l Database and protocol

bands. The underlying idea is that, if two bands have a syn-

chronous behavior, then the stable spectral zones should ocqyr the experiments are carried out on the Polyvar database

at the same moments and, therefore, the states should Changﬁnétdata from a single speaker. Ten keywords of that database

about the same time in the corresponding Markov chains. To I'¢jere used since the experiments are based on isolated words. The

flect this statement, the potential functiUﬁ’jc)’,(a:) forthe clique  gata were collected over telephone lines on a period of one year.

{(t, k), (¢,1)} is defined by The first fifty sessions are considered as the training corpus and
U@ (@) = frali — | us:ed to estimate the parame.ters of all the models under consider-

bkl ’ ation. The next twenty sessions are reserved as DTW reference

wherefx; is a synchronization weight between bandnd, if, ~ templates. Finally, the next 50 ones are used to carry out some

as previouslyz; , = i andz;; = j. The bigger the weight isolated word recognition experiment.

is, the more synchronous is the behavior of the two sub-bands.

The total potential for therior law can now be written, using Various model can be trained for each word using the training

the horizontal and vertical potentials defined previously, in th€orpus, each model having two states per phoneme. In order

following way to compare random field modeling of speech with more usual
techniques, two HMMs are trained. For the first one, denoted

U(z) = Z aé’j)_l‘k,mi_k + Z frealzer —xeq]  (2)  HMMcep, the feature vector consists in 12 cepstral coefficients

t,k b,k 1>k derived from a 24 channel filter-bank on a linear frequency scale.

. . The second HMM, HMMy,, directly takes as input the output of
As the RFM_focuses qn lntgractlons between frquency banc{%,e filter-bank. In both cases, the probability density functions
the observation space is defined by the output of a filter-bank and

. . . " . associated to the states are single diagonal covariance Gaussians.
k is the filter index. We assume the conditional independen 9 9

. . . inally, random field models are also trained for various factors
of the observationd%; ;. which are modeled by a single mono- ¥
dimensional Gaussian. I Distributed by ELRA:http://www.icp.grenet.fr/ELRA




. It should be noted that the model HMp, is, in principle, order to be able to compare the HMM results with the filter-
similar to a fully synchronized RFM, except for the training pro-bank based models, one can normalize the distance by the feature
cedure. As stated before, HMMs are a particular case of the ravector dimension. In this case, the model Hlyi outperforms
dom field model proposed and, therefore, the algorithms used fall the other models and RFMs and HMM give similar perfor-
sampling data from the models and for isolated word recognitiomances.
experiments are always the same, whatever the model.

3.3 Isolated word recognition
3.2 Sampling and comparison

For isolated word recognition, one has to compB{&”|1V], the
For each of the 10 words and each of the models, 50 samples HRbability of an observatiod” knowing the wordW. In the
drawn using a Gibbs sampler [5, 3]. The principle of the Gibbgramework of hidden Markov modeling, this probability is ap-
sampler is to iterate on every point of the lattice and to random'kiroximated with the Viterbi algorithm. With random field mod-
choose a value for that point according to the local conditional|s this probability is approximated using the Iterated Condi-
law. The mean distance between the samples and the obserygnal Mode (ICM) algorithm [3]. This algorithm finds out the
tions can be computed using a DTW algorithm and is normalizegttice X which maximizes thgosteriorprobability P[X|Y, W].
by the test pattern length. A sample is aligned with the 20 corréyggaet al. used this algorithm to make a parallel decoder [4].
sponding reference patterns using a Euclidean local distance ape |CM algorithm is somewhat similar to the Gibbs sampler
the final distance is the smallest of the distances to the referengfih the difference that, rather than randomly selecting a value
patterns. Table 1 shows the mean distances for each word-moggl 4 point of the lattice, it chooses the value for which the local
pair. The last row is the distance averaged over all the words. conditional probability is maximum. As it is an iterative algo-
rithm, it converges to a local maximum and strongly depends on
the initial conditions. Experiments are carried out with two dif-
ferent strategies for the initialization. The first strategy consists
in starting with a uniformly segmented field while the second one
consists in running a Viterbi decoding independently in each band
and using the Viterbi paths to initialize the field before running
the ICM algorithm. For a given utterandé and a wordiW, the
pseudo log-likelihood of the observation can be computed. The

HMM RFM (v)
cep | fbk | 0.0 | 0.005| 0.02 | 0.05
annulation| 4.02 | 5.69| 7.89 | 6.77 | 6.60 | 6.80
casino 3.57| 558 | 821 | 7.57 | 7.49| 7.92
cinéma 3.91| 553| 7.06 | 6.82 | 6.81| 7.05
concert 395| 6.09| 755| 7.03 | 7.07| 7.15

COTSO 360] 569 7.71| 6.87 | 653 | 7.24 pseudo log-likelihood is the sum of the local log-likelihoods at

guide 3.92) 645 7.62| 6.78 | 6.35| 7.55 each point of the lattice and is used instead of the log-likelihood

message | 3.87 | 6.33) 7.69 | 6.90 | 6.88 ) 7.76 which is intractable because of the partition function

muge 3.84| 536 | 7.38| 6.78 | 6.16 | 7.16

quitter 3.66 | 5.79| 7.39 | 6.95 | 6.58 | 6.03 Table 2 gives the recognition rates for the various models. The

suivant 350) 549| 7.37| 686 | 6.74 | 6.66 first row shows the recognition rates when using a uniformly seg-
| average [3.78][5.80] 7.59] 6.93 [ 6.72] 7.13|  mented initial field in the ICM algorithm while the second row is

obtained using a Viterbi decoder to initialize the field.

Table 1: (word,model) DTW mean distance

HMM RFM (v)
The distances obtained with filter-bank output feature vectors is cep | fok | 0.0 | 0.005] 0.02 | 0.05

always greater than the one obtain with cepstral coefficients. This [",niform | 84.4 | 59.6 | 43.2 | 43.8 | 43.6 | 47.2
is due to the fact that we have 12 cepstral coefficients while we [\jerpi 998 9461 69.0] 696 | 7001 69.2
have 24 filter-bank outputs. Therefore, the local distance tends
to be higher for filter-bank based feature vectors and one must
be careful comparing the results obtained with HMMwith the Table 2: Isolated word recognition rates (in %)

other results reported here. The figures in this table show that

a single HMM is more able to produce realistic samples than B both casesife. uniform or Viterbi initialization), the recogni-
Random Field Model, whatever the value of the hyper-parametépn error rate increases for RFMs. The results obtained using a
~. However, the mean distance of 6.72 obtained wite= 0.02  uniform initial field are poor, even for the standard HMMs. The
indicates that such a model is not very far fragality. Itis inter-  ICM algorithm leads to 84.4 % for HMM,, in the first case while
esting to note that, with RFMs, the minimum of the mean DTWthe classical Viterbi algorithm gives a rate of 99.8 %. It is to be
distance for a given word is not always for= 0.02. For exam- noted that the Viterbi initialized ICM and the Viterbi algorithm
ple, for the word Quitter’, the distance is 6.03 foy = 0.05 but  are equivalent for the HMMs and for the RFM with = 0.0.

itis 6.72 fory = 0.02. This may be explained by the fact that However, it can be seen that the synchronization parameters have
v is an experimentally set parameter and it does not depend some influence on the results. This is clearly shown in the uni-
the model. A real parameter estimation procedure should avofdrm case where the recognition rate for= 0.5 is better than
such problems by directly finding out the best value of the synfor other values ofy. This trend is less obvious in the Viterbi
chronization parameters, thus giving more realistic samples. I€M case. Asy increases, more changes are done by the ICM




algorithm but the energy variations for the hidden field are sma# large framework for statistical modeling of speech in which cur-
compared to the log likelihood of the observations and the soluent models, such as single and multi-band HMMs, are particular

tion does not improve a lot.

One interesting point to note is that for RFMs, about half of the
errors are due to the same model which is often recognized in
place of the correct word. When using a uniform initial field, it[l]
is the word ‘torsd which is responsible for most of the errors
while, with the Viterbi initialization strategy, it is the wordf-
nulatior’. Moreover, in the latter case, the worduide' is rarely 2]
recognized (about 5 times out of 50 occurrences) which was not
the case in the former case.

(3]
4 DISCUSSION

The model presented in this paper is a preliminary approach t{4]
ward Markov random field modeling of speech. The experiments
using simulations showed that this very simple model is able to
generate realistic filter-bank output samples, in terms of distan
to real observations. The experiments on isolated word recogni-
tion pointed out the weaknesses of this kind of model. The results
clearly show that the ICM algorithm highly depends on the initial®]
solution. To get rid of that problem, other decoding strategies,
based on simulated annealing [6], which is known to converge 7]
global minima of the field potential, must be investigated.

The interesting point of such a category of models is the simplic-
ity by which the model can be extended, since many potentiz{13
functions can be envisaged using the same formalism. For exam-
ple, the understanding of the errors in the isolated word recog-
nition experiments should help the design of more discriminant
potential functions. We also believe that the poor recognition
results obtained are mainly due to the lack of a real maximum-
likelihood parameter estimation algorithm. Indeed, the heuristic
used for training the model is based on HMMs independently
trained for each band and therefore, the temporal structure of the
model does not take into account the frequency interactions. We
are currently developing an algorithm for parameter estimation
which can be used in any case where the potential function is
linear with respect to the parameters to be estimated. The algo-
rithm is a combination of the EM algorithm and of a probabilistic
descent to maximize the intermediate quantity [7, 8] of the EM
algorithm.

5 CONCLUSION

A new category of statistical models of speech segments, based
on Markov random fields, is presented and compared to classical
hidden Markov modeling. Experiments on isolated word recog-
nition showed that the current Random Field Model does not yet
perform as well as standard HMMs but those preliminary experi-
ments are promising. More work has to be done in order to define
a real parameter estimation algorithm and more accurate models.
The interesting point of such an approach is that the design of a
Random Field Model is rather simple and intuitive. It also defines

cases.
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