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ABSTRACT ily of stochastic models [6] which includes conventional HMMs.

) ) ) Constraints on the trajectory are applied in the model parame-
We describe a speech recogniser which uses a speech productn@p-space’ which is generally also the observation (e.g. MFCCs)
motivated phonetic-feature description of speech. We argue thghace since model parameters are generally means and variances
th|§ .'S a.natural vyay s descnbg th? speech S|.gnal and offers %.lf'Gaussian distributions. The Markov assumption is still made
efficient intermediate parameterisation for use in speech recogiis, 5pservations from different states, but the observations from
tion. We also propose to model this description at the syllablg,,,, 5ingje state are no longer independent of each other. We wish
rather than phone level. to go one step further than this, and model trajectories at the syl-

The ultimate goal of this work is to generate syllable modeldable Ievgl, angl, moreove_r, allow for ‘emPora' .misalignment _Of
whose parametemxplicitly describe therajectoriesof the pho- those trajectories. We believe that the trajectories should be in a
netic features of the syllable. We hope to move away from HiddefP€ech production-based feature space. The experimental work
Markov Models (HMMs) of context-dependent phone units. As &/€scribed here is a step towards such a model.

step towards this, we present a preliminary system which consis(t:%mext dependency HMM-based ~ systems model co-

of two parts: recognition of the phonetic features from the speeclyicjation effects with context-sensitive models. In effect, a
signal using a neural network; and decoding of the feature-basggkarant variant of each phoneme model is required for each
description into phonemes using HMMs. possible context. The large number of models required means
that techniques for reducing the number of model parameters
1. INTRODUCTION a oucing | P
are used: state or mixture tying, for example. Typical HMM

We will first discuss some of the shortcomings of the contextSystems use decision trees to perform state tying. These trees

dependent phone HMM approach, then suggest the syllable #8e ad hoc questions which are typically about phonetic features.

an alternative unit, with models of syllables specified in term¥Ve want a more principled system than this, so we argue against

of phonetic features. HMM systems were trained to recognisée approach of assuming that all phonetic contexts are different,

phones from MFCCs (Mel Frequency Cepstral Coefficients) an#hen grouping them together to reduce the number of parameters.

from the feature representation. Co-articulation is not simply a function of phonetic context. It
depends rather on sonpropertiesof the context (articulatory

1.1. The Problems with HMMs of Phones targets or trajectories, perhaps), speech rate, position within a
syllable, and so on. In other words, co-articulation should not be

Markov assumption The Markov assumption, namely that the yoqelied as phonetic-context sensitivity, but more explicitly.

observations generated by the states of a (Hidden) Markov Model

are independent of one another, is not true for speech. Speech 2. PHONETIC FEATURES

is produced by movements of articulators, and therefore, in some

space, speech is constrained to follow a smooth trajectory wil.1. Feature system

occasional abrupt accelerations. Smoothly moving articulators ) ) ] o
he choice of feature system must consider both its descriptive

canproduce sharply changing acoustics —when the lips open duft X . - 2y .
)Fower (its ability to distinguish all the required phoneme or syl-

ing the production of [ p ], for example. Therefore, we can sa ) } o

that there is some parametric description of speech, perhaps ﬂple units) and thg ease of auFomatlcaIIy recognising the features

terms of the articulators, in which the parameters follow piecel/o™ the speech signal. We will refer to the types of feature sys-

wise smooth trajectories. tems of interest as speech production-based phonetic features, or
simplyphonetic featuredecause they describe the way the sound

Trajectories The Markov property can be relaxed, so that stateis produced (place of articulation, for example).

generate observation sequencestrajectories Such a model

has been called a Segmental HMM [5], which is one of a fan*(—a‘ variety of feature systems exist. Binary systems, such as that of

Chomsky and Halle [2], can be designed so that any combination
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Figure 1: Example NN output for the SPE feature system. The utterance is part of TIMIT sentence dr4/mbns0/sx50 and is “...economic
cutbacks..”. Each feature takes values from 0 to 1. The phonetic labels are the correct transcription.

since the labels generated in this way will not show all the effects
¢ binati ¢ q q q . Bf overlap that we intend to model. In future, embedded training
eaturgs to any combination of +and - pro ucgs a escrlptlpn %chniques (repeated cycles of training and automatic segmenta-
a legitimate segment (although not necessarily one used in tﬂgn using the trained models) may be able to improve the sit-

particular language in question). uation. The TIMIT [4] database was used for all experiments,

Multi-valued systems, on the other hand, tend to use fewer feRecause it is labelled throughout with phone and word bound-
tures, but allow these features to take more than two values. ¥ies. The training/testing division was the official one; the SA
typical feature in such a system might be place of articulatiorsentences were omitted, leaving approx. 3600 training sentences
which could take valueselar, dental labial, and so on. We con- and 1300 test sentences.

sidered one feature system of each type : Chomsky and HaII‘ﬁ'eural networks Two differing approaches were used. For the

blr:ar); system [23’ Whl;:hleI:Ewn:_rifefr o afPEha_ln: a mu_lltll- IIMera’[ure system, one neural network (NN) was trained for each
valued system adapted (for English) from [7], which we will ca feature; for the SPE feature set, a single network was trained to

MV. detect all features.

of values is allowed. In other words, setting the values of th

2.2.  Automatic feature detection In both systems, the NNs were multilayer networks with one hid-

The output from the first component of the recogniser will be éj_en_ layer, recurrent time-delaying connections and an_lnput con-
isting of a total of 7 frames of context. Each frame is param-

set of parallel feature streams; an example is shown in figure 1! X ) o

. . o (?terlsed as 12 MFCCs plus energy. First and second derivatives
This representation allows temporal overlap, or misalignment, 0 ; )

. were computed by special units. All nets were sparsely connected

features. In other words, features do not all change value simu)-

taneously — at phone boundaries, for example — but tend to tg%nly 1in 4 possible connections between layers were made). The

staggered in time. Such overlap results from co-articulation an%onnectlwty and time window arrangement were inspired by [10].

we believe that this representation allows the modelling of con'Erames are 25ms in duration and spaced 10ms apart. The Nico

. . . té)olkit [10] was used for all experiments. The network sizes and
textual effects more effectively than conventional triphone based ", " o o
recognisers training parameters were roughly optimised on a validation set

’ — 100 files held out from the training set. No speaker appeared
Other work on automatic feature detection includes [1] in whictin both training and validation sets. The test set was only used
the features are strictly acoustic — energy in certain frequendyr final evaluation. The total number of frames in the test set is
bands, for example. Such features, although intended to be phwe-411 000.
netic, are more closely related to MFCCs than true phonetic feah}I ltiovalued feat Th ‘ loved b ¢
tures, and indeed, perform almost identically in speech recognl-u I-valued features IS sys.em employed a .r?um. er o
. s smaller networks, each performing a 1-of-N classification task.
tion applications. . . )

The 8 features and their possible values are shown in table 1,

To train an automatic feature detector, we need data labelled wigiong with the recognition accuracies for each net. The bottom
feature values. Since no such database exists, we must genefée in the table indicates the percentage of frames in which all 8

these feature labels from phonetic labels. This is far from ideafgatures are assigned the correct value. This is effectively a frame-



Feature Values Frames learned to generalise well. When evaluating the results in the ta-
correct (%) ble, it should be noted that on average, feature values are ‘0’ 70%
i NN _HMM of the time and ‘1’ 30% of the time; for some features, the value
centrality Cﬁntral full 85 73 is ‘0’ more than 90% of the time (94% for nasal). 14% of frames
- e - are silence.
continuant | continuant noncontinuant 86  n/a
frontback back front 84 64
manner vowel fricative
approximant 87 75
nasal occlusive
phonation | voiced unvoiced 93 87 Frames Frames
place low mid Feature correct (%) | Feature correct (%)
high labial NN HMM NN HMM
coronal palatal 72 61 vocalic 88 65 consonantal 90 n/a
corono-dental  labio-dental high 86 83 back 88 58
velar glottal low 93 87 anterior 90 71
roundness | round non-round 92 83 coronal 90 70 round 94 63
tenseness | lax tense 87 nla tense 91 56 voice 93 76
continuant 93 65 nasal 97 68
All correct together 53 32 strident 97 83
) | All correct together 51 11
Table 1: The multi-valued feature system. All features can addit

tionally take the value ‘silence’. Performance is measured on the

full test set.

Table 3: The binary-valued feature system from [2]. Performance
is measured on the full test set.

wise phone classification result, except the classification space
contains nearly 6000 feature combinations (the product of the
number of network outputs), and not just the 39 in the TIMIT

phone set, for example. The confusion matrix for the manner fea-

ture is shown in table 2.

As for the MV feature results, the bottom line of table 3 shows the
percentage of frames in which all 14 network outputs were cor-

é ° rect; this figure includes the ‘silence’ output of the network. The
g = g _ =z _ space of feature combinations is effectively + 1 = 8193, since
S s § ) 3 g one output signifies silence. Fewer than 1% of these combinations
% & £ g 8 8 are used in English.
silence 890 13 23 13 31 3.0
approximant 0.9 68.6 1.8 1.8 1.3 257 Hidden Markov Models Mainly for comparison with the NN
fricative 1.9 0.9 88.2 1.1 4.6 3.1 approach, the method in [7] was repeated for the TIMIT data.
nasal 18 19 21 844 26 7.3  HMMs were used to recognise regions of the speech signal with
occlusive 31 08 56 23 858 2.4  feature values. Each feature was recognised independently: our
vowel 05 47 12 12 09 0915

Table 2: Confusion matrix for the ‘manner’ neural network. All

figures are percentage of frames correct.

SPE features The SPE feature system has 13 features. A sing
network was trained to recognise all features simultaneously, wi
an additional network output for ‘silence’. All networks had 13

approach was exactly as if we were doing phone recognition. Tak-
ing voicing (phonation) as an example, there are three models:
voiced, unvoiced and silence. The “language model” was either
a simple loop which allowed any sequence of these three values
(but not two consecutive regions with the same value), or a bi-

I%l(ram trained on data. The observation vectors were composed

12 MFCCs and energy, with their 1st and 2nd derivatives (39
components). The training of the HMMs was not discriminative

inputs and 14 outputs and the same context window and derivgy ¢ontrast with the NNs). This system produces feature value
tives as the MV networks. Various numbers of hidden units wergy,,osfor speech, and not continuously valued features

used, and a network with 250 hidden units was found to give the

best performance (measured on the validation set). The resultsorder to compare the accuracy of the HMM systems to the
for this network on the full test set are given in table 3 and typicaNN systems, the results were converted into frame accuracies, as
network output is shown in figure 1. For these results, networkhown in tables 1 and 3. The HMM experiments were performed
outputs were thresholded (values over 0.5 become 1, the rest liedependently of the NN ones, and consequently there were are
come 0). The performance on training and testing portions of thminor differences in the feature systems - those features not used
database did not differ greatly — this indicates that the network the HMM systems are indicated loya in the tables.



2.3. Analysis 4. CONCLUSION

The results in tables 1 and 3 show that the NN systems were movée have introduced a new method for speech recognition, which
accurate for both feature systems. Furthermore, the nature of thelrows promising results. The method allows explicit modelling
output — continuously valued features — is preferable to the HMMf coarticulation effects by using a phonetic feature representa-
symbolic output since it can be interpreted as feature value posen of the speech signal. We have achieved a high accuracy map-
terior probabilities. The superior performance of the NN systemging from acoustics to this representation using neural networks,
may be because they use a longer context window and were dand have demonstrated the potential of the phonetic features for
criminatively trained. Only the output from the NN system wasspeech recognition.

used in the recognition experiments. )
Future work may use segment models of the types surveyed in

For the SPE feature system, the largest network (250 hidden uni{§], with explicit, parametric models of feature trajectories. Early
gave the best performance. Training time for such large networksork suggests that cubic polynomials are a reasonable fit to ob-
is considerable, even with sparse connectivity (12 hrs per epoclerved feature values within syllables.

on a Sun Ultra 10); 14 epochs were required to achieve the quoted

performance. We intend to experiment with larger numbers of ACknOWledgementS

hidden units and different degrees of connectivity. SK is funded by EPSR®ealising Our Potential Awardumber

The NN phoneme classification frame accuracies of around 5268R/L59566. PT is funded by EPSRC grant number GR/L53250.

are similar to results reported in [3], in which a NN using phoneticT'S and AS are students at the University of Edinburgh.

features was used for recognition of single-speaker data (Swedish
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