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ABSTRACT

We present a model of early word learning which learns
from natural audio and visual input. The model has
been successfully implemented to learn words and their au-
dio-visual grounding from camera and microphone input.
Although simple in its current form, this model is a �rst
step towards a more complete, fully-grounded model of
language acquisition. Practical applications include adap-
tive human-machine interfaces for information browsing,
assistive technologies, education, and entertainment.

1. INTRODUCTION

Around their �rst birthday, infants �rst begin to use
words to describe salient aspects of their environment in-
cluding objects, actions, and people. They learn these
words by listening to speech and observing their environ-
ment. The acquisition process is complex. The infant must
successfully segment connected multiword spoken utter-
ances into acoustic units which correspond to the words
of their language. The infant must also categorize the
world in order to acquire the proper semantic associations
of these acoustic units. Remarkably, the infant is capable
of all these processes despite the noisy input provided by
his or her perceptual system.

This paper reports on our on-going e�orts to develop a
computational model of early word learning using input
similar to what an infant might receive in certain situa-
tions. Our current task focuses on learning words that can
be grounded in the visual semantics of static views of ob-
jects with relatively easy �gure-ground separation. Input
to the system consists of naturally spoken multiword ut-
terances and color images. We have implemented a system
in a probabilistic framework that is able to learn an audio-

visual lexicon which can then be used to understand and
generate spoken language grounded in visual semantics.

Language is grounded at several levels in our model.
First, the surface forms of words are represented using
statistical models which account for the inherest acoustic
variability of speech (Section 3.1). Second, word mean-
ings are grounded in terms of visual models which are de-
rived from camera input (Section 3.2). Word semantics
are grounded in terms of statistically de�ned subspaces of
color and shape. Last, word classes are de�ned in terms
of visual dimensions. All words which are grounded in

color dimension subspaces (ex. \red", \greenish", \pink")
are considered part of the same class since they are all
grounded in terms of only color. Similarly shape terms
(ex. \car", \ball", \bottle") form a separate word class.

Many interesting computational models of learning word
semantics have been proposed including [3], [1], [10]. Each
of these models relies on either human-generated text,
phoneme transcripts, or assumptions about pre-existing
discrete semantic classes. In contrast, our model learns
surface-form and semantic models of words from only au-
dio and visual sensory input.

The word learning model has applications in the design
of human-machine interfaces that use spoken language. A
signi�cant problem in designing e�ective speech interfaces
is the di�culty in anticipating a person's word choice and
associated intent [2]. Our system addresses this problem
by learning the vocabulary of each user together with its
visual grounding. This approach enables a new type of
human-machine interface which can adapt to the prefer-
ences and abilities of individual users over time.

2. THE MODEL

The word learning model is best understood by consider-
ing three tasks which it performs: learning, understanding,
and generating spoken language. This section provides a
functional description of the various processes and data
structures involved in these tasks. Technical descriptions
of algorithms are presented in Section 3.

2.1. Learning from Audio-Visual Input

Figure 1 shows the processes (light gray boxes) and data
structures (dark boxes) involved in learning from audio-
visual input. Input consists of color images paired with
spoken utterances acquired using a CCD camera and a
microphone. For example a person might present a red
ball to the camera and say \this is a red ball".

The input image is analyzed along shape and color1 di-
mensions and represented by a set of histograms (See Sec-
tion 3.2). Phoneme analysis produces a representation of
the spoken utterance consisting of (1) a phoneme trace

consisting of 40 phoneme class probabilities estimated at

1We plan to add analysis of motion, texture, and relational

position dimensions in the future.



Figure 1: Learning audio-visual models from camera and
microphone input

a rate of 100 Hz, and (2) a Hidden Markov Model encoding
the most likely phoneme state sequence of the speech (see
Section 3.1). Hereafter, we will refer to the data extracted
from one audio-visual interaction as an AV-event.

Once a su�cient number2 of AV-events have been accu-
mulated, the system builds an AV-lexicon which can then
be used for spoken language understanding and generation.
Items in the AV-lexicon can be semantically grounded in
terms of color, shape, or both color and shape.

Conceptually the lexicon is created as follows. All AV-
events are clustered along each possible combination of
visual dimensions. A search for re-occurring speech seg-
ments then attempts to �nd acoustic labels for each visual
cluster3 . An example taken from real input data will be
used to describe this process. In the sample task a per-
son spoke several utterances to describe images of simple
blocks of various colors and shapes. The visual cluster-
ing process generated several AV-event clusters. One such
cluster roughly corresponded to the blue region of color
space. Some of the spoken utterances and their automat-
ically generated phonetic transcripts are shown in Table
1.

Utterance Phonetic transcript

\this cone is blue" i s - k ah m i n - b l i w

\that's a blue cube" b eh - f ah - b l i - k y oo
\this ball is blue" i z - b au l i z - b l oo

\this is blue" i z oo z - b l i oo

Table 1: Sample spoken utterances associated with an
AV-event generated by clustering in the color dimension.
Portions of the phonetic transcripts corresponding to the
word \blue" are emphasized for the convenience of the
reader.

Once a subset of the AV-events have been selected based

2The number of events requireddepends on the size of vocab-

ulary and the distribution of words used in the input utterances.
3Note that the same AV-event will be a member in multiple

visual clusters. For example an AV-event with an image of a

red ball would be part of the cluster representing the red part

of color space, the \round objects" part of shape space, and the

\red, round objects" part of color-shape space.

on visual clustering, a search procedure locates reoccurring
acoustic segments within this set of utterances. In Table 1,
this might include segments corresponding to re-occurring
words such as \this" and \is" as well as \blue". A �ltering
process, labeled salience threshold in Figure 1, eliminates
words which are not strongly correlated with the visual
cluster being analyzed. The result is a set of speech seg-
ments and associated visual models that are stored in the
AV-lexicon. Table 2 shows sample results from analyzing a
set of utterances including those listed in Table 1. The �rst
section shows several acoustic segments which were found
to re-occur across multiple utterances but were rejected by
the salience threshold process. The second section contains
utterances which exceeded the salience threshold making
them likely acoustic labels for the visual cluster.

Acoustic f ah (\a")
matches rejected due to i z (\is")
low salience k y oo (\cube")
Acoustic matches i z - b l oo - (\is blue")
accepted due to b l oo (\blue")
high salience b l i oo (\blue")

Table 2: Sample output of the acoustic search gen-
erated by clustering along the color dimension. Human
generated transcripts of each segment are shown in paren-
theses for the convenience of the reader. Note that the
last two entries are alternate pronunciations of the word
\blue".

In a �nal stage of processing, the acoustic sequence spot-
ter searches all spoken utterances in the audio-visual mem-
ory for occurrences of each speech segment stored in the
AV-lexicon. Co-occurrence statistics are accumulated to
determine patterns of word order at the word class level. In
English, color terms always precede shape terms when the
words are adjacent. If the shape term proceeds the color
term, some other sequence (such as the word \is") must be
inserted between the shape and color terms. These types
of regularities can be learned as word-class co-occurrence
statistics. In the current implementation the statistics are
limited to recording how often shape terms precede color
terms and vice versa. In the future we expect to expand
the role of this analysis to address more advanced types of
statistical syntax learning.

To summarize, the model takes as input a set of color im-
ages of objects paired with descriptive spoken utterances.
The learning process produces two data structures. The
AV-lexicon contains a set of audio-visual models consist-
ing of speech models and associated visual models. Co-
occurrence statistics model higher level word-class regu-
larities. We now describe how these two data structures
can be used to perform language understanding and gen-
eration.

2.2. Understanding Spoken Language

Figure 2 shows how spoken input is processed for an
object recall task. The goal is to take a spoken descrip-
tion of one or more objects as input, and to sort a pool of
objects by how well they match the meaning of the spo-



Figure 2: Understanding spoken language

ken input. The spoken utterance is recorded and analyzed
using the same process as the learning phase. An audio-
based lexical search is performed to �nd occurrences of
items from the AV-lexicon in the input speech. The class
co-occurrence statistics are used to constrain this search
process similar to a statistical grammar in a conventional
speech recognizer. The search produces one or more lex-
ical items which were detected in the input speech. The
visual models associated with these lexical items are then
used to sort a pool of images in descending relevancy. In
a typical interaction a person might say \blue balls". In
response the system should locate images of objects which
are blue in color and round in shape to demonstrate its
understanding of the input speech.

2.3. Generating Spoken Language

Figure 3 shows the complementary task of generating a
spoken description of an input image. The input image is
analyzed in terms of color and shape. The AV-lexicon is
searched for items which best match each visual dimen-
sion of the input image. The best matching lexical items
are then spoken using a commercial phonetic speech syn-
thesizer. The class co-occurrence statistics are used to set
the word order of the multiword output utterance. In a
typical interaction a person might present a blue ball and
in response the system would speak the phonetic sequence
\b l oo - b o l" (i.e. \blue ball").

3. IMPLEMENTATION DETAILS

Section 2 gave a functional description of how the word
learning model creates and uses an audio-visual lexicon.
This section presents selected algorithmic details of the
current implementation.

3.1. Speech Processing

Speech is processed in real-time by a recurrent neu-
ral network producing phoneme probability estimates at
a rate of 100 Hz. When a spoken utterance is detected, a
Hidden Markov Model of the most likely phone sequence
is generated using the Viterbi algorithm and an all-phone

Figure 3: Generating spoken language

loop grammar with unigram phoneme transition probabil-
ities. The phoneme recognition accuracy is approximately
70% when insertion and deletion errors are balanced. The
sequence of phoneme probability estimates associated with
the utterance is referred to as the phoneme trace. The
HMM and the associated phoneme trace forms our un-
derlying representation of a spoken utterance. For more
details on the speech processing and segmentation algo-
rithms see [7] and [8].

Speech segments are compared by using forced viterbi
alignment as follows. Consider two speech segments A and
B. For each segment we will have a phoneme trace and
corresponding HMM. If we let LAB be the log likelihood
that HMMA produced TraceB (computed using standard
forced Viterbi alignment), and LBA be the log likelihood
that HMMB produced TraceA, we can then de�ne the
distance between A and B to be (LAB + LBA)=2. Similar
to many word spotting algorithms (for example see [4]) we
normalize this score by an all-phone garbage model.

3.2. Visual Processing

Objects are segmented from a controlled background us-
ing a statistical background color model. The resulting
object mask is used to compute a set of local shape fea-
tures based on spatial relations between derivatives. Color
features are computed by sampling pixel values within the
object mask region. The shape and color features are ac-
cumulated in separate histograms which can later be com-
pared using �2 divergence. For further details on the visual
processing algorithms see [9].

3.3. CREATING AND USING AN

AUDIO-VISUAL LEXICON

Several segmentation and clustering algorithms are used
in the learning processes described in Section 2.1. Initial
visual clustering is performed by computing pairwise dis-
tances between each pair of AV-events using the �2 diver-
gence on shape and color histograms. A preset threshold
is used to determine cluster membership along each com-
bination of dimensions.

The next stage of the algorithm �nds acoustic labels for



each of the visual clusters. The search for re-occurring
acoustic segments is based on an exhaustive search within
sets of spoken utterances generated by visual clustering.
Ideally the algorithm would search for acoustic matches
between each possible pair of segments. Unfortunately, the
search space becomes immense if we search for speech seg-
ment boundaries at a phoneme trace frame rate of 100 Hz
for moderate-sized clusters. Even if the search only con-
siders segment boundaries which coincide with phoneme
boundaries the search space is often still impractically
large. To speed the search we have implemented a syl-
lable hypothesis generator based on consonant-vowel anal-
ysis. The algorithm searches for re-occurring segments by
exhaustively computing the distance between all one- and
two-syllable segments within the cluster using forced align-
ments at syllable boundaries. Pairs of segments which have
a symmetric log likelihood below a prede�ned threshold are
considered an acoustic match.

For the next stage of processing, we need to de�ne the
salience of each speech segment similar to [3]. If we let C
be the subset of AV-events associated with the visual clus-
ter of interest and C be all remaining AV-events which
are not part of the cluster, we can de�ne the salience of
a speech segment s to be Pr(sjC)

Pr(sjC)
, where Pr(sjC) is the

probability of detecting s within the AV-events in C and
Pr(sjC) is the probability of detecting s in the remain-
ing AV-events, C. A highly salient word will occur often
within the visual cluster and rarely in the context of other
visual input. Words such as \red" or \ball" will likely
be salient for appropriate clusters in color or shape dimen-
sions respectively. In contrast words such as \the" and \is"
will not be salient for any cluster when using su�ciently
large input data sets.

Class co-occurrence statistics are computed by acous-
tically searching for all entries of the �nal AV-lexicon in
the audio-visual memory. Di�erent thresholds are set for
the syllable-based search algorithm described above to �nd
occurrences of lexical items in AV-memory.

Continuous multiword speech recognition is performed
in a standard HMM framework using Viterbi decoding.
The search lattice is constructed using phoneme state se-
quences of lexical items. Word transition probabilities
within the search lattice are determined using class co-
occurrence statistics.

4. CONCLUSIONS AND FUTURE

DIRECTIONS

We have presented a computational model of early word
learning that clearly de�nes the processing of audio and vi-
sual input leading to the formation of a lexicon of words
with acoustic and visual grounding. This model has been
implemented and initial tests show that the model works
with natural data from interactions with people in con-
trolled situations. We are currently running experiments
on larger tasks with multiple subjects and will report our
�ndings in the future.

We believe that building models of this type might be

a �rst step towards a better understanding how infants
come to master language with such remarkable speed and
consistency. De�ning semantics in terms of visual input
allows for grounding word semantics and word classes in
terms of the ontology of the world as projected through
the system's perceptual system. We believe that further
exploration of this theme may lead to powerful new algo-
rithms for syntax acquisition.

This work has practical applications for adaptive
human-machine interfaces in numerous domains including
information browsing (for example browsing and searching
catalogs), command-and-control, entertainment [5], and
disability aids [6].
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