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ABSTRACT

The hidden Markov modelling experiments presented in
this paper show that consonant identification results can be
improved substantially if a neural network is used to extract
linguistically relevant information from the acoustic signal
before applying hidden Markov modelling. The neural
network – or in this case a combination of two Kohonen
networks – takes 12 mel-frequency cepstral coefficients,
overall energy and the corresponding delta parameters as
input and outputs distinctive phonetic features, like
[±uvular] and [±plosive]. Not only does this preprocessing
of the data lead to better consonant identification rates, the
confusions that occur between the consonants are less
severe from a phonetic viewpoint, as is demonstrated. One
reason for the improved consonant identification is that the
acoustically variable consonant realisations can be mapped
onto identical phonetic features by the neural network. This
makes the input to hidden Markov modelling more
homogenous and improves consonant identification.
Furthermore, by using phonetic features the neural network
helps the system to focus on linguistically relevant
information in the acoustic signal.

1. INTRODUCTION

The work presented in this article is related to other work in
the area of automatic speech recognition [1,2,3], which also
uses phonetic features to recognise speech. The reason for
using phonetic features is that, as Bitar & Espy-Wilson put
it, by using phonetic features we "directly target the
linguistic information in the signal and ... minimize other
extra-linguistic information that may yield large speech
variability" [1] (p. 1411). In contrast to Bitar & Espy-
Wilson, who use a knowledge-based event-seeking
approach for extracting phonetic features from the
microphone signal on the basis of acoustic cues, the
mapping from the acoustic to the phonetic-feature domain
is performed by neural nets in the experiments which we
shall describe below. We shall compare the consonant
identification results from two experiments, one of which
uses acoustic-phonetic mapping and another one which
does not. To put an end to any doubts you may have about
the answer to the question in the title immediately, the
answer is "yes".

2. A HYBRID CONSONANT
IDENTIFICATION SYSTEM

Two consonant identification experiments were carried out
in which segments were modelled by simple left-to-right 3-
state hidden Markov models, with each state having only a
single Gaussian function to model the observation
probabilities [4]. In one experiment, which we shall call the
baseline experiment, 12 mel-frequency cepstral
coefficients, overall energy and the corresponding delta
parameters were used as input to hidden Markov modelling
directly. In the second experiment, these acoustic
parameters were used as input for two parallel 50x50
Kohonen networks [5] which map the acoustic parameters
onto 14 phonetic features, like [±uvular] and [±plosive].
The phonetic features for the consonants are derived from
the three dimensions of the IPA chart (place, manner,
voicing). The first network maps the mel-frequency cepstral
coefficients and energy onto phonetic features, while the
second network maps the delta parameter onto (the same!)
phonetic features; the output vectors from the two neural
network were concatenated and used for hidden Markov
modelling. The reasons for using two neural networks
instead of one are not relevant for the following discussion
and are explained in [6,7]. No lexicon or language model
were used.

3. DATA
The acoustic parameters were computed from read passages
from the Eurom0 database for English, German, Italian and
Dutch (2 male and 2 female speakers for each language). A
SAMPA transcription [8] was available for each of the read
passages. This SAMPA transcription was adapted to cater
for our needs in several ways:

• Plosives and affricates were labelled by two segments:
one for the closure ("p0" = voiceless closure; "b0" =
voiced closure) and one for the burst-plus-aspiration,
("p", "t", "k") or friction part ("f", "s", "S", "z", "Z").
This was necessary, because the place of articulation
of the plosive or affricate cannot be determined from
its closure, so that the neural nets cannot determine a
feature value for the consonant’s place of articulation
on the basis of frames belonging to the closure.

• Although the SAMPA transcription symbol for the
English approximant /r/ is the same as for the alveolar
trill in Italian and Dutch (by some speakers and in



some regions), its realisation is very different. We
used /rapr/ to label the English approximant, reserving
/r/ for the alveolar trill.

• The German SAMPA symbol /v/ is used to describe a
sound which is normally realised as a labiodental
approximant (IPA symbol /�/). We have therefore
labelled it /vapr/, to distinguish it from English, Italian
and Dutch fricative /v/.

• In Dutch, the SAMPA symbol /w/ is used to describe a
labiodental approximant, and here, too, we have
adopted the label /vapr/ to describe it. The
transcription symbol /w/ is reserved for the bilabial
approximant, which only occurs in English and Italian.

• Further, Dutch has both an alveolar and a uvular “r”-
sound, which we shall transcribe /r/ (as in Italian) and
/R/ (as in German), respectively.

• In some dialects of Dutch, there is no /G-x/ opposition.
Since there were only few realisations of the Dutch
voiced velar fricative /G/, we replaced it by /x/.

• In order to have more training data for the HMMs, we
pooled Italian geminate consonants with non-
geminates.

Each segment was modelled by a hidden Markov model
(HMM). In the identification step consonants, not the
segments modelled by hidden Markov models, were
identified. The consonant /t/ for example was defined in the
phoneme dictionary as the (optional) HMM for "p0"
followed by the HMM for "t". Different language- and
speaker-specific variants of /r/, such as /rapr/, /r/ and /R/,
were modelled by different HMM's; otherwise, the same
labels were used for different allophones of the same
sounds, as for instance for dark and clear /l/. Only
intervocalic consonants were used in this experiment (for
reasons explained in [6,7]). Note that in the hidden Markov
modelling identification step, no restrictions were imposed
on the consonant which can be identified, so that for
example in German, Italian and Dutch /T/ and /D/ could be
identified despite the fact that these phonemes only occur in
English.

4. THE EFFECT OF MAPPING ON
CONSONANT IDENTIFICATION

In the experiment in which acoustic parameters are mapped
onto phonetic features, 52.00% of the consonants (with 32
possible consonants) are identified correctly. In the baseline
experiment, the percentage of correctly identified
consonants is only 13.17. In the mapping experiment all
consonants are identified better, except /D/ (in English
only) and /C/ (in German only). Without acoustic-phonetic
mapping, the majority of the other consonants are
misidentified more often than not; many of them are never
identified correctly.

The overall percentages reported above are influenced
strongly by the number of realisations for each consonant.
Since we are interested in a phonetic analysis of error

patterns across the consonants regardless of the number of
occurrences in the database, we have computed the
percentage of correct identifications for each consonant
separately. The average correct identification score (ACIS)
is then computed as

total of all correct identification percentages
ACIS = 

number of consonants to be identified

where the multiple is the total of the percentages along the
diagonal of the confusion matrix and the denominator is the
number of rows in the confusion matrix. We thus
compensate for the consonants' actual number of
occurrences and give each consonant equal weight. The
ACIS is 68.47% when mapping is applied and only 31.22%
when it is not. The reason why ACIS with mapping is only
double that without mapping, while the correct
identification rate is almost four times as high, is that many
infrequent consonants were already identified well in the
baseline experiment. We will try to offer a phonetic
explanation for this finding in the following section.
The consonant misidentifications also show an interesting
tendency. An incorrectness coefficient, which we shall call
the average phonetic misidentification score (APMS) was
computed as

phonetic misidentification coefficient
APMS = 

      sum of the misidentifications

The phonetic misidentification coefficient is the sum of all
the products of the misidentification percentage (all
percentages in non-diagonal cells of the confusion matrix)
times the number of incorrectly identified phonetic
categories (place and manner of articulation, and voicing).
This gives a measure of the severity of the error in terms of
phonetic features, with possible values between 1 (either
place or  manner or  voicing wrong) and 3 (place, manner
and  voicing wrong). This score went down from 1.79 when
no mapping is applied to 1.57 when it is. This indicates that
after mapping, the incorrectly identified consonant is on
average closer to the phonetic identity of the consonant
which was produced. The number of confusions on 2 or 3
phonetic categories is reduced substantially.

5. A PHONETIC INTERPRETATION
OF THE TWO MEASURES

If we look into the phonetic detail which hides behind the
ACIS measures for the two experiments, we find some
interesting patterns. Although at first sight there seems to
be a negative correlation between the number of
realisations of a consonant and its correct identification
percentage in the baseline experiment, this correlation is
not borne out by the data. Although all consonants with n >
100 have low identification rates in the baseline experiment
(15.8% or less), not all "rare" consonants (n < 100) are
identified well. This is shown in table 1, which lists all
consonants with n < 100.



Table 1: Correct identification percentages in the
baseline (no mapping) and mapping experiment for all
consonants with n < 100, ordered according to correct
identification percentage in the baseline experiment

Cons no mapping mapping n

C 100.0 75.0 8

J 100.0 100.0 4

L 100.0 100.0 10

D 97.8 91.3 46

w 94.1 100.0 17

rapr 91.2 96.5 57

x 88.2 93.4 76

S 78.1 90.6 32

R 50.0 77.5 80

g 47.6 57.1 21

vapr 35.2 66.7 54

b0Z 28.0 96.0 25

j 17.6 94.1 17

h 6.7 86.7 15

N 3.8 6.2 26

p 1.4 33.3 72

f 1.2 64.6 82

p0f 0.0 100.0 3

p0s 0.0 72.2 54

b 0.0 4.4 84

b0z 0.0 70.3 37

A closer look at table 1 shows that the consonants which
are recognised best (correct identification rate > 80%) are
mostly language-specific consonants: /C/ (German), /J/
(Italian), /L/ (Italian), /D/ (English), /w/ (English, Italian),
/rapr/ (English), /x/ (German, Dutch). It seems that
consonants which do not contain cross-language variability
are acoustically more homogenous and therefore recognised
better in the baseline system than other sounds.

Table 2: Correct identification percentages in the
baseline (no mapping) and mapping experiment for all
affricates and the corresponding fricatives

mapping Corr. mapping

Affric. no yes fric. no yes

p0f 0.0 100.0 f 1.2 64.4

p0s 0.0 72.2 s 3.1 64.7

p0S 0.0 40.2 S 78.1 90.6

b0z 0.0 70.3 z 10.4 50.5

b0Z 28.0 96.0 Z no intervocalic real.

That affricates are not recognised well despite the fact that
they are mostly language-specific can be easily understood:
the component parts (closure and friction), which are
modelled by separate hidden Markov models, occur in all
languages and are therefore probably less homogenous. The
affricates are recognised much better when mapping is
applied, as is shown in table 2. The fricatives which
correspond to the affricates are also recognised better.

The identification of voiceless plosives /p/, /t/ and /k/ also
improves greatly (the difference between baseline and
mapping experiment is 31.9, 32.4 and 58.2 percent points,
respectively, with consonant identification rates under 6%
in the baseline experiment). Especially /k/, which varies
widely from a velar to a pre-velar place of articulation
depending on the identity of the surrounding vowels, is
identified much better.

Another source of variation in the realisation of voiceless
plosives is the presence or absence of aspiration: English
and German have aspirated voiceless plosives, whereas
Italian and Dutch do not. It seems unlikely that the
variation in aspiration can be better handled by the system
which uses mapping, because the different spectral
properties of the aspiration do not so much depend on the
place of articulation of the consonant as on the following
vowel (of which, one could say, it is the voiceless
realisation). This is corroborated by the confusions which
occur after mapping: although the voiceless plosives /p/, /t/
and /k/ are confused with non-plosives far less often than in
the baseline system, they are confused with each other
quite frequently.

As is well-known, the consonant /h/ is more context-
sensitive than any other due to its spectral dependence on
the neighbouring vowels. Its identification improves by 80
percent points (from 6.7% in the baseline system to 86.7%
in the mapping system). This again stresses the ability of
the neural network to map acoustically variable signals onto
the same phonetic features. The ability of the system which
uses acoustic-phonetic mapping to handle allophonic
variation so well can be easily understood: the neural
network(s) on the one hand respect the acoustic variability,
which leads to different allophones being modelled in
different parts of the phonotopically organised Kohonen
network(s), while on the other hand it outputs the same
phonetic feature vector for the different allophones of a
phoneme.

It is probably not only this homogenising effect of the
mapping which increases the consonant identification rates.
It is difficult to explain some of the improvements that we
find when mapping is applied. This is for example the case
for /f/, for which the constraints on its articulation do not
seem to leave much room for variation: not only does /f/
require a precise labiodental articulation, so that the place
of articulation is less variable than for /S/, for instance,
there is also hardly a resonating cavity before (i.e.
downstream) its articulation place, so that no strong



context-dependent variation should be expected on that
account either. The improvement which is found must
probably be put down to the ability of the neural net to
select linguistically distinctive phonetic features which
allow for a better separation of the consonants in hidden
Markov modelling. This lies behind the APMS measure
presented in the previous section and shows in the types of
confusions which occur in the baseline and in the mapping
system: whereas consonants are confused with phonetically
very different consonants in the baseline system, these
confusion occur far less often in the system which uses
acoustic-phonetic mapping. In the baseline system, /r/ is
never identified as itself, but confused with /g/ in 61% of
the cases, as well as with /L/ (16%), /w/, (13%) and several
other phonemes. After mapping, /r/ is recognised as itself in
85% of its realisations, and next rarely as /R/ and /l/, which
are both phonetically close to /r/, being a trill and an
alveolar approximant like /r/, respectively.

For another sound which behaves very differently in the
baseline and the mapping system, namely /j/ (difference in
identification 76.5 percent points), a similar behaviour
pattern is found. In the baseline system, /j/ is identified as
itself for only 18% of its realisations, and confused with /L/
(53%), /J/ (18%), /rapr/, /r/ and /g/ (6% each). Although
especially the confusions with /L/ and /J/, both being
palatalised consonants, are quite understandable, it
compares unfavourably with the identification of /j/ after
mapping. In the mapping system, /j/ is recognised as itself
in 94% of the cases and confused only with /z/ (6%).

The same is true for all nasal phonemes except /J/, which
was already identified correctly in 100% of its realisations.
In the baseline system they are not only confused with other
nasals, but often also with /R/, /L/, /w/, /rapr/ and /vapr/. In
the mapping system, they are mainly confused with other
nasals. It seems therefore that the neural net helps to
identify the nasality of the consonant.

It is obviously not possible to discuss all the details in the
confusion matrices from the two experiments. For that
reason, we have included them on the CD-ROM version of
the proceedings in [MAPPING.GIF] and [BASELINE.GIF].

6. CONCLUSIONS

As is clear from the consonant identification results for the
two hidden Markov modelling experiments presented
above, acoustic-phonetic mapping leads to better consonant
identification rates, as reflected in the higher ACIS value in
the mapping experiment than in the baseline experiment.
Furthermore, the confusions that occur in the mapping
experiment are less severe than in the baseline experiment
from a phonetic viewpoint. This is reflected in the lower
APMS value in the mapping experiment. The better
performance of the system when acoustic-phonetic mapping
is used can be put down to its ability to map acoustically
variable consonant realisations to the same phonetic feature
vector on the one hand and its ability to select and use only
linguistically relevant, distinctive information in the

acoustic signal on the other. Thus, the results from our
experiments confirm Bitar & Espy-Wilson's assumption
quoted in the introduction.

In Bitar & Espy-Wilson's experiments [1], the experimental
results were better when a (phonetic) feature-based
representation (FBR) was used as input to hidden Markov
modelling than when a cepstral-based representation (CBR)
was used, but "CBR outperformed FBR when higher
mixtures were used. The better performance can be
attributed to better modeling of the richer spectral
information contained in CBR" [1] (p. 1413). In our
mapping system, the rich spectral information contained in
the acoustic parameters is not lost, but in fact used by the
Kohonen networks when they self-organise. In so far, the
effect of using a neural net is similar to that of using
multiple mixtures: it allows the system to associate very
different (allophonic) spectral characteristics with the same
consonant. In our system, an advantage can be seen in the
fact that, although the user must define the size of the
Kohonen network(s), the requirements on the user to decide
on the architecture of the HMM for each of the consonants
are relaxed without losing the functional advantages of the
use of multiple mixtures.
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