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ABSTRACT

This paper describes three cross-language ASR experiments
which use hidden Markov modelling. The first one shows that
consonant identification improves when  vowel transitions are
used. In particular, the consonants’ place of articulation is
identified better, because the vowel transitions contain
formant trajectories which depend on the consonant’s place of
articulation. The second experiment compares consonant
identification results when acoustic parameters belonging to
the consonant itself (no vowel transitions are used in the
second experiment) are used as input to hidden Markov
modelling directly with identification rates when acoustic-
phonetic mapping is performed before applying hidden
Markov modelling. It is shown that acoustic-phonetic mapping
greatly improves consonant identification rates. In the third
experiment, the acoustic parameters from the vowel
transitions are also mapped onto consonantal ( not vocalic)
features, as are the acoustic parameters belonging to the
consonants. The additional use of vowel transitions does not
lead to further improvements in the consonant identification,
however. This is probably due to undertraining of the vowel
transitions in the Kohonen network.

1. INTRODUCTION

A lexicon and language model can compensate for many
phone identification errors at the acoustic level by excluding
impossible words and word sequences. For spontaneous
speech recognition, we must however also optimise phonetic
decoding of the acoustic signal. We shall therefore present
several controlled experiments on the enhancement of
consonant identification which do not use a lexicon or
language model.

One of the main challenges to ASR is the coarticulation
between sounds. Many ASR systems based on hidden Markov
modelling deal with coarticulation by using generalised
triphones as the basic unit for recognition. Triphone models
can cater for context-sensitivity at least to immediately
neighbouring sounds; generalised triphones exploit the known
acoustic similarities between some transitions and thus
maximise the training data [1,2,3,4]. The use of triphones thus
helps the system to cope with the lack of homogeneity in data
belonging to different realisations of the same phoneme. But
besides making the acoustic parameters for a phone less
homogenous, context-sensitivity also means that information
about the identity of a sound is available in its immediate

context. We shall try to address this information explicitly by
using the acoustic parameters belonging to vowel transitions
in addition to those belonging to the consonants to identify the
consonant. This is the aim of the first experiment (section 2).

The second aim of this paper is to address linguistic
information available in the signal explicitly. The assumption
is that if we manage to do this properly, it will be easier to
distinguish phonemes − which is the ultimate goal of a speech-
to-text ASR system. In a second experiment, the acoustic
parameters belonging to consonants (without surrounding
vowel transitions) are therefore mapped onto phonetic features
by two Kohonen networks before applying hidden Markov
modelling. In this mapping, (only) linguistically relevant
phonetic features, like [±plosive] and [±uvular], are defined on
the basis of the acoustic parameters. The results are compared
to a baseline experiment in which the acoustic parameters are
used as input for hidden Markov modelling directly, i.e
without acoustic-phonetic mapping (section 3).

In a third experiment, we shall combine the use of vowel
transitions and acoustic-phonetic mapping. The vowel
transitions are used for “relational processing”, i.e. the
acoustic parameters belonging to the vowel transitions are
mapped onto phonetic features of the neighbouring
consonants, as will be explained in section 4. The results are
compared to a baseline experiment in which only the
consonant is used for identification after mapping onto (non-
relational) consonantal phonetic features.

All the experiments which are presented are cross-language,
which stresses the generality of the phonetic principles which
are the subject of this paper and at the same time allows us to
maximise the training data.

2. EXPERIMENT 1:
VOWEL TRANSITIONS

In the first experiment, consonant identification rates are
compared in two subexperiments. In the first or baseline
experiment, consonants are identified on the basis of acoustic
parameters belonging to what is traditionally labelled as a
consonant. In the second subexperiment, the surrounding
vowel transitions are used additionally. Since the formant
trajectories in the vowel transitions depend on the place of
articulation of the neighbouring consonant, it is expected that
the information in the vowel transition enhances consonant
identification (as is the case for human listeners [5,6,7,8]). To



enhance the difference between the two subexperiments, only
intervocalic consonants, which are flanked by a vowel offset
and a vowel onset transition, are identified.

2.1. Data

HTK software [9] was used to compute 12 mel-frequency
cepstral coefficients (MFCC's), energy and the corresponding
delta parameters from a 16 kHz microphone signal. A 15-ms
Hamming window was applied to minimise smearing of the
spectral changes in the transitions over time; a step size of 5
ms and preemphasis of 0.97 were used. The acoustic
parameters were computed for English, German, Italian and
Dutch read passages from the Eurom0 database.

Vowel transitions were defined to be 35 ms long (cf. [10]), but
can be shorter if the vowel is less than 70 ms. In that case, the
vowel onset and offset transitions coincide with the first and
second half of the vowel.

Since the acoustic parameters are very similar for the
transitions of a vowel into consonants which share the same
place of articulation, labelnames were generalised across
consonantal place of articulation. Eight places of articulation
were distinguished, namely labial (lab), dental (den), alveolar
(alv), alveolo-palatal (alp), palatal (pal), velar (vel), uvular
(uvu) and glottal (glo). The transitions were thus labelled as
"i:_lab", "O_vel", "alp_u:", etc. (vowels in SAMPA notation).

Consonants were labelled in adapted SAMPA. It was necessary
to adapt standard SAMPA notation because, although all
SAMPA labels are phonemic within a language, there is
overlap when different languages are used. To give one
example, the SAMPA symbol /r/ is used to represented the
acoustically very different realisations of that phoneme in
English, where it is an alveolar approximant, and in Italian,
where it is an alveolar trill. Further, our system requires that
the closure phase of plosives and affricates be labelled
separately from the rest of the sound, so that extra labels had to
be invented. The labelnames used in this paper are described
elsewhere in these proceedings ([11]) and also in [12].

2.2. Hidden Markov modelling

For each of the labels, a 3-state left-to-right hidden Markov
model (HMM) was trained with a single probability density
function per state (also using HTK).  There were 280 different
HMM's for vowel transitions; the number of consonant HMM's
was 30. To maximise the training data, all consonants, not
only intervocalic ones, were used. For testing, only the signal
belonging to intervocalic consonants was used in the first
(baseline) subexperiment. In the second subexperiment, vowel
off- and onset transitions were used in addition. The signal
belonging to a single consonant (plus transitions) was offered
to the system for identification without any further context.

2.3. Results and discussion

The use of vowel transitions leads to an increase in consonant
identification (for 32 consonants) by 2.66 percent points
compared to the baseline experiment. Although the effect of

adding vowel transitions may not seem very large at first
sight, it must be pointed out that the identification of the
consonants' place of articulation (8 places) improved by 18.21
percent points (table 1). The results show that the information
available in vowel transitions about the place of articulation of
the neighbouring consonant can be used successfully in an
ASR system (cf. [13]).

Table 1. Identification rates for 32 consonant categories
without/with use of vowel transitions, as well as for 8 place-
of-articulation and 7 manner-of-articulation categories

no V transitions V transitions

consonant 13.17% 15.83%

place 26.57% 44.78%

manner 46.79% 41.97%

3. EXPERIMENT 2:
ACOUSTIC-PHONETIC MAPPING

In a second experiment the signal belonging to the consonant
(the same consonants as in the first experiment) is first
mapped onto distinctive phonetic features like [±labial] and
[±nasal], which are then fed into a HMM procedure. The
results are compared with those from the first subexperiment
of Experiment 1, in which hidden Markov modelling is carried
out on the basis of acoustic parameters directly. It is expected
that by applying acoustic-phonetic mapping, the system can
focus on linguistically relevant signal properties [11,14,15].

3.1. Data

The input signals are the same as in Experiment 1, as are the
consonantal labels (except that no vowel transitions were used
in the present experiment). The phonetic features which are
used [12] were derived directly from the 3 dimensions of the
IPA chart (manner, place and voicing) and are thus closely
related to the articulatory properties of the consonants rather
than being more abstract phonological features.

3.2. Mapping and hidden Markov modelling

Acoustic-phonetic mapping was performed separately for
MFCC’s and energy and for the delta parameters by two
parallel Kohonen networks ([16]; see section 4.2), after which
the output vectors, containing phonetic features, were
concatenated and fed into hidden Markov modelling [12]. The
consonants were modelled by 30 HMM’s.

3.3. Results and discussion

Compared to the baseline experiment, in which the acoustic
parameters were fed directly into the HMM system, a



substantial improvement was found both for the consonant
identification rates (38.83 percent points) and for the correct
identification of the consonants' place of articulation (39.55
percent points). This shows that it is very effective to help the
system focus on linguistically relevant properties by mapping
acoustic parameters onto phonetic features. This is further
supported by the very considerable increase (30.91 percent
points) found in the identification of the consonants' manner
of articulation (table 2). A more phonetically oriented
interpretation of the results is given in [11].

Table 2. Identification rates for 32 consonant categories
without/with use of acoustic-phonetic mapping, as well as for
8 place-of-articulation and 7 manner-of-articulation categories

no mapping mapping

consonant 13.17% 52.00%

place 26.57% 66.12%

manner 46.79% 77.70%

4. EXPERIMENT 3:
ACOUSTIC-PHONETIC MAPPING

AND TRANSITIONS

Combining the results from the first two experiments, we used
the signal belonging to the consonants together with the
preceding and following vowel transitions in the acoustic-
phonetic mapping procedure and then for identification of the
consonant by applying hidden Markov modelling. Vowel
transitions were used for what we shall call "relational
processing", i.e. the signal belonging to the vowel transitions
was used to extract information about the neighbouring
consonant by mapping the acoustic parameters belonging to
the transitions onto phonetic features representing the place of
articulation of the neighbouring consonant. The results are
compared with those from the subexperiment of Experiment 2
which uses mapping of the acoustic parameters belonging to
the consonants only.

4.1. Data

The input signals are the same as in the previous experiments.
Both consonants and vowel transitions are mapped onto
consonantal phonetic features. Labels are different from the
ones used in experiment 1 when vowel transitions are mapped:
because vowel identity is not relevant for the aim of the
experiment, namely consonant identification, all vowels were
pooled, resulting in labelnames like "V_uvu" and "den_V".
Pooling of all vowels was not possible in Experiment 1,
because the vowel transitions are different for each vowel and
these acoustic differences have to be respected in hidden
Markov modelling to ensure sufficient homogeneity of the
inputdata for each HMM. The reason why this is not a
problem in the mapping experiment which is presented here is

that the Kohonen networks map different acoustic variants
onto the same phonetic feature vectors, thus creating
homogenous input to hidden Markov modelling despite of the
variability in the acoustic parameters for different vowels.

4.2. Mapping and hidden Markov modelling

The mapping procedure was the same as in Experiment 2.
Hidden Markov modelling was also the same as in that
experiment, except that 46 HMM's are used when transitions
were mapped (30 consonant HMM's plus 2 x 8 HMM's for
vowel onset and vowel offset transitions for 8 places of
articulation − cf. 280 transition HMM’s in Experiment 2).

Since Experiment 1 has shown that vowel transitions only
enhance identification of the neighbouring consonant's place
of articulation, the acoustic parameters belonging to vowel
transitions are only mapped onto place-of-articulation features
of the neighbouring consonant. For frames belonging to
consonants, the acoustic parameters are mapped onto the full
set of consonantal phonetic features, as was the case in
Experiment 2.

Since different acoustic parameters are relevant for vowel
transitions than for the consonants themselves, two Kohonen
networks were trained. One was trained with delta parameters
only, and should therefore better reflect the spectral changes
which are relevant for the formant trajectories in the vowel
transitions. Since spectral change is not important for the
consonant HMM’s, the other Kohonen network was trained
with MFCC’s and energy. By concatenating the output vectors
from the two Kohonen networks, the hidden Markov
modelling is allowed to select the relevant information.

4.3. Results and discussion

We only found a small improvement in the consonant
identification rates (0.23 percent points) as well as in the
identification rate of the consonants' place of articulation (1.59
percent points). For manner of articulation, there was a small
decrease of 1.03 percent points (table 3).

Table 3. Identification rates for 32 consonant categories after
mapping, without/with use of vowel transitions, as well as for
8 place-of-articulation and 7 manner-of-articulation categories

no V transitions V transitions

consonant 52.00% 52.23%

place 66.12% 67.71%

Manner 77.70% 76.67%

First, of course, it must be noted that the baseline results are
already good, so that large improvements are less likely. But
analysis of the data also showed that the negligible changes in



the identification rates compared to the improvements in the
first two experiments probably lie in undertraining of the
vowel transitions in the Kohonen networks used for acoustic-
phonetic mapping. Experiments for a larger corpus (TIMIT)
are underway to verify this assumption.

5. CONCLUSIONS

Three cross-language experiments were carried out to show
how consonant identification can be improved even if no
lexicon or language model is used.

In a first experiment the use of vowel transitions was
investigated in a consonant identification experiment based on
hidden Markov modelling, using mel-frequency cepstral
coefficients, energy and the corresponding delta parameters as
input parameters. It was shown that especially the consonants'
place of articulation was identified much better when
transitions are available to the system.

In a second experiment, the acoustic parameters were mapped
onto distinctive phonetic features and then used for hidden
Markov modelling. A large improvement in consonant
identification, as well as in the identification of place and
manner of articulation, was found in comparison to the
baseline experiment, in which the acoustic parameters were
fed into hidden Markov modelling directly.

In a third experiment it was shown that mapping vowel
transitions onto relational phonetic features does not lead to
the expected improvement in consonant identification. The
most likely reason for this is that acoustic-phonetic mapping
in the Kohonen network breaks down due to undertraining of
the vowel transitions. The experiment will be repeated with
the TIMIT database to overcome this problem.

Given these good results from our experiments, the
application of the proposed signal processing is expected to
improve the phone recognition rates in a complete ASR
system, since we need rely less on the lexicon and language
model to correct errors at the acoustic level. An experiment is
currently in progress to test the validity of this expectation.
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