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context. We shall try to address this information explicitly by
ABSTRACT using the acoustic parameters belonging to vowel itians
in addition to those belonging to the consonants to identify the

This paper describes three cross-language ASR experimepgsonant. This is the aim of the first experiment (section 2).
which use hidden Markov moflieg. The first one shows that

consonant identification improves when vowel transitions aréhe second aim of this paper is to address linguistic
used. In particular, the consonants’ place of articulation igformation available in the signal explicitly. The assumption
identified better, because the vowel transitions contaits that if we manage to do this properly, it will be easier to
formant trajectories which depend on the consonant’s place @tinguish phonemeswhich is the ultimate goal of a speech-
articulation. The second experiment compares consondgattext ASR system. In a second experiment, the acoustic
identification results when acoustic parameters belonging farameters belonging to consonants (without surrounding
the consonant itself (no vowel transitions are used in thewel transitions) are therefore mapped onto phonetic features
second experiment) are used as input to hidden Markdy two Kohonen networks before applying hidden Markov
modelling directly with identification rates when acoustic-modelling. In this mapping, (only) linguistically relevant
phonetic mapping is performed before applying hiddephonetic features, liketplosive] and fuvular], are defined on
Markov moddling. It is shown that acoustic-phonetic mappingthe basis of the acoustic parameters. The results are compared
greatly improves consonant identification rates. In the thirtb a baseline experiment in which the acoustic parameters are
experiment, the acoustic parameters from the vowelsed as input for hidden Markov mdiieg directly, i.e
transitions are also mapped onto consonantal ( not vocalijthout acoustic-phonetic mapping (section 3).
features, as are the acoustic parameters belonging to Ehe hird . hall bi h f |
consonants. The additional use of vowel transitions does not & _t. Ird _experiment, we shall combine t € use of vowe
lead to further improvements in the consonant identificatior%rans!t!ons and acoustlc-?hongtlc mapping. 'Ehe_ vowel
tfansmons are used for “relational processing”, i.e. the

however. This is probably due to undertraining of the vowe " i belonaing to th it
transitions in the Kohonen network. acoustic parameters belonging to the vowel ltams are

mapped onto phonetic features of the neighbouring
1. INTRODUCTION consonants, as will be explained in section 4. The results are
’ compared to a baseline experiment in which only the

A lexicon and language model can compensate for ma@@nsonant is used for identification after mapping onto (non-
phone identification errors at the acoustic level by excludintglational) consonantal phonetic features.

impossible words and word sequences. For spontaneo,H

" L R the experiments which are presented are cross-language,

speech recogtion, we must however also optimise phonetic , . . - o .
. L Wwhich stresses the generality of thleonetic principles which
decoding of the acoustic signal. We shall therefore presen ; . :
; ate the subject of this paper and at the same time allows us to

several controlled experiments on the enhancement Qf_ . -

: o . . maximise the training data.
consonant identification which do not use a lexicon or

language model.

One of the main challenges to ASR is the coarticulation .
between sounds. Many ASR systems based on hidden Markov 2. EXPERIMENT 1:
modelling deal with coarticulation by using generalised VOWEL TRANSITIONS

triphones as the basic unit for recagm. Triphone models In the first experiment, consonant identification rates are

can cater for context-sensitivity at least to immediatel%ompared in two subexperiments. In the first or baseline

nelghbpurlqg ;oqqu; generalised triphones §>.<pI0|t the kno‘%@(periment, consonants are identified on the basis of acoustic
acoustic similarities between some transitions and th

S .- . L‘ﬂ)sarameters belonging to what is ftitazhally labelled as a
maximise the training data [1,2,3,4]. The use of triphones th% nsonant. In the second subexperiment, the surrounding

helps the system to cope with the lack of homogeneity in da\t/%wel transitions are used additionally. Since the formant

belonging to different realisations of the same phoneme. BH‘a'ectories in the vowel transitions depend on the place of

besides making the aC.QU.St'C parameters for‘a phon_e IeaSr%cuIation of the neighbouring consonant, it is expected that
homogenous, context-séfingty also means that information

bout the idetity of di lable in its i diat the information in the vowel transition enhances consonant
about the deity of a ound 1s avaliable In 1S Immediale ;o nification (as is the case for human listeners [5,6,7,8]). To



enhance the difference between the two subexperiments, oalgding vowel transitions may not seem very large at first
intervocalic consonants, which are flanked by a vowel offsetight, it must be pointed out that the identification of the

and a vowel onset transition, are identified. consonants' place of articulation (8 places) improved by 18.21
percent points (table 1). The results show that the information
2.1. Data available in vowel transitions about the place of articulation of

the neighbouring consonant can be used successfully in an
HTK software [9] was used to compute 12 mel-frequencygr system (cf. [13]).

cepstral coefficients (MFCC's), energy and the corresponding
delta parameters from a 16 kHz microphone signal. A 15-ms
Hamming window was applied to minimise smearing of thdable 1. Identification rates for 32 consonant categories
spectral changes in the transitions over time; a step size ofvBhout/with use of vowel transitions, as well as for 8 place-
ms and preemphasis of 0.97 were used. The acous@tarticulation and 7 manner-of-articulation categories
parameters were computed for English, German, Italian and
Dutch read passages from the EuromO database.

no V transitions V transitions

Vowel transitions were defined to be 35 ms long (cf. [10]), but consonant 13.17% 15.83%
can ble shorter i; thg vowel iS.|.ESS tharl 7(21 ms.. Ln t:atfpase, t:e place 26.57% 44.78%
vowel onset and offset transitions coincide with the first an manner 26.79% 211.97%
second half of the vowel.

Since the acoustic parameters are very similar for the 3. EXPERIMENT 2:

transitions of a vowel into consonants which share the same ACOUSTIC-PHONETIC MAPPING

place of articulation, labelnames were generalised across

consonantal place of articulation. Eight places of articulatiom a second experiment the signal belonging to the consonant
were distinguished, namely labial (lab), dental (den), alveoldthe same consonants as in the first experiment) is first
(alv), alveolo-palatal (alp), palatal (pal), velar (vel), uvulamapped onto distinctive phonetic features like [+labial] and
(uvu) and glottal (glo). The transitions were thus labelled ggnasal], which are then fed into a HMM procedure. The
“i:_lab", "O_vel", "alp_u:", etc. (vowels in SAMPA notation). results are compared with those from the first subexperiment
of Experiment 1, in which hidden Markov mdiiteg is carried

Wt on the basis of acoustic parameters directly. It is expected
at by applying acoustic-phonetic mapping, the system can
cus on linguistically relevant signal properties [11,14,15].

Consonants were labelled in adapted SAMPA. It was necess
to adapt standard SAMPA notation because, although

SAMPA labels are phonemic within a language, there l?o
overlap when different languages are used. To give one

example, the SAMPA symbol /r/ is used to represented the
acoustically very different realisations of that phoneme it 1. Data

English, where it is an alveolar approximant, and in lItalian,

where it is an alveolar trill. Further, our system requires that

the closure phase of plosives and affricates be labellddie input signals are the same as in Experiment 1, as are the
separately from the rest of the sound, so that extra labels had¢@sonantal labels (except that no vowel transitions were used
be invented. The labelnames used in this paper are descritiédhe present experiment). The phonetic features which are

IPA chart (manner, place and voicing) and are thus closely
2.2. Hidden Markov modelling related to the articulatory properties of the consonants rather

than being more abstract phonological features.
For each of the labels, a 3-state left-to-right hidden Markov
model (HMM) was trained with a single probability density
function per state (also using HTK). There were 280 differerd.2. Mapping and hidden Markov modelling
HMM's for vowel transitions; the number of consonant HMM's

was .30'T0 ma_1X|m|se the training data, aI_I consonants,_no coustic-phonetic mapping was performed separately for
only intervocalic ones, were used. For testing, only the sign

FCC's and energy and for the delta parameters by two

bbelon?mg toblntervgcah(i ::ort\sonants (‘jNastSEd n thte f':}?irallel Kohonen networks ([16]; see section 4.2), after which
(baseline) subexperiment. In the second subexperiment, vo output vectors, containing phonetic features, were

off- and onset transitions were used in addition. The S|gn§ ncatenated and fed into hidden Markov miutg [12]. The
belonging to a single consonant (plus tross) was offered consonants were modelled by 30 HMM's '
to the system for identification without any further context. '

2.3. Results and discussion 3.3. Results and discussion

The use of vowel transitions leads to an increase in consonant
identification (for 32 consonants) by 2.66 percent point€ompared to the baseline experiment, in which the acoustic
compared to the baseline experiment. Although the effect prameters were fed directly into the HMM system, a



substantial improvement was found both for the consonattiat the Kohonen networks map different acoustic variants
identification rates (38.83 percent points) and for the correonto the same phonetic feature vectors, thus creating
identification of the consonants' place of articulation (39.550mogenous input to hidden Markov mbitg despite of the
percent points). This shows that it is very effective to help theariability in the acoustic parameters for different vowels.
system focus on linguistically relevant properties by mapping

acoustic parameters onto phonetic features. This is further . . .
supported by the very considerable increase (30.91 percéht2. Mapping and hidden Markov modelling

points) found in the identification of the consonants' manner

of articulation (table 2). A more phonetically orientedrne mapping procedure was the same as in Experiment 2.

interpretation of the results is given in [11]. Hidden Markov modéing was also the same as in that
experiment, except that 46 HMM's are used when transitions

Table 2. Identification rates for 32 consonant categorievere mapped (30 consonant HMM's plus 2 x 8 HMM's for

without/with use of acoustic-phonetic mapping, as well as farowel onset and vowel offset transitions for 8 places of
8 place-of-articulation and 7 manner-of-articulation categoriegrticulation- cf. 280 traniion HMM'’s in Experiment 2).

Since Experiment 1 has shown that vowel transitions only

No mapping mapping enhance identification of the neighbouring consonant's place
consonant 13.17% 52.00% of articulation, the acoustic parameters belonging to vowel
place 26.57% 66.12% transitions are only mapped onto place-of-articulation features
manner 46.79% 77.70% of the neighbouring consonant. For frames belonging to

consonants, the acoustic parameters are mapped onto the full
set of consonantal phonetic features, as was the case in
Experiment 2.
4. EXPERIMENT 3: Since different acoustic parameters are relevant for vowel
ACOUSTIC-PHONETIC MAPPING transitions than for the consonants themselves, two Kohonen
AND TRANSITIONS networks were trained. One was trained with delta parameters

only, and should therefore better reflect the spectral changes

Combining the results from the first two experiments, we useghich are relevant for the formant trajectories in the vowel
the signal belonging to the consonants together with tHEaNsitions. Since spectral change is not important for. the
preceding and following vowel transitions in the acousticconsonant HMM's, the other Kohonen network was trained
phonetic mapping procedure and then for identification of th&ith MFCC's and energy. By concatenating the output vectors
consonant by applying hidden Markov mbitg. Vowel from the two Kohonen networks, the hidden Markov
transitions were used for what we shall call "relationainodelling is allowed to select the relevant information.
processing"”, i.e. the signal belonging to the vowel items
was used to extract information about the neighbourin . .
consonant by mapping the acoustic parameters belonging%o?" Results and discussion
the transitions onto phonetic features representing the place of
articulation of the neighbouring consonant. The results arfe only found a small improvement in the consonant
compared with those from the subexperiment of Experimentidentification rates (0.23 percent points) as well as in the
which uses mapping of the acoustic parameters belonging itientification rate of the consonants' place of articulation (1.59
the consonants only. percent points). For manner of articulation, there was a small
decrease of 1.03 percent points (table 3).

4.1. Data
Table 3. Identification rates for 32 consonant categories after

mapping, without/with use of vowel transitions, as well as for

The input signals are the same as m_t_he previous eXpe”mer@ﬁ)lace-of—articuIation and 7 manner-of-articulation categories
Both consonants and vowel transitions are mapped onto

consonantal phonetic features. Labels are different from the

ones used in experiment 1 when vowel transitions are mapped: no V transitions |V transitions
because vowel identity is not relevant for the aim of the | consonant 52.00% 52.23%
experiment, pamgly consonant |Qent|f|cat|on, all vowels were place 66.12% 67.71%
pooled, reslting in labelnames like "V_uvu" and "den_V".

Manner 77.70% 76.67%

Pooling of all vowels was not possible in Experiment 1,
because the vowel transitioase different for each vowel and
these acoustic differences have to be respected in hidden
Markov modding to ensure sufficient homogeneity of theFirst, of course, it must be noted that the baseline results are
inputdata for each HMM. The reason why this is not already good, so that large improvements are less likely. But
problem in the mapping experiment which is presented heredsalysis of the data also showed that the negligible changes in




the identification rates compared to the improvements in the
first two experiments probably lie in undertraining of the

vowel transitions in the Kohonen networks used for acoustic-
phonetic mapping. Experiments for a larger corpus (TIMITfl'

are underway to verify this assumption.

5. CONCLUSIONS

Three cross-language experiments were carried out to show

5.

how consonant identification can be improved even if no

lexicon or language model is used.

6.

In a first experiment the use of vowel transitions was
investigated in a consonant identification experiment based on

hidden Markov modéng, using mel-frequency cepstral

coefficients, energy and the corresponding delta parameters 'as
input parameters. It was shown that especially the consonants'

place of articulation was identified much better wherg

transitions are available to the system.

In a second experiment, the acoustic parameters were mapped

onto distinctive phonetic features and then used for hidden

Markov moddling. A large improvement in consonant

identification, as well as in the identification of place and
manner of articulation, was found in comparison to the

baseline experiment, in which the acoustic parameters we}8-

fed into hidden Markov modleng directly.

In a third experiment it was shown that mapping vowell.

transitions onto relational phonetic features does not lead

to

the expected improvement in consonant identification. The
most likely reason for this is that acoustic-phonetic mapping

in the Kohonen network breaks down due to undertraining qf
the vowel transitions. The experiment will be repeated wit

the TIMIT database to overcome this problem.

Given these good results from our experiments,
application of the proposed signal processing is expected
improve the phone recotion rates in a complete ASR

system, since we need rely less on the lexicon and language

model to correct errors at the acoustic level. An experiment
currently in progress to test the validity of this expectation.
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