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ABSTRACT

A combination of techniques for increasing recognition accuracy
has been developed for an automated corporate directory system
with 120,000 entries. Using a traditional recogniser an accuracy
of around 60% has previously been obtained for both a 156 town
name task and 1108 road name task. Techniques presented in
this paper comprise front-end modifications, context dependent
models, improved lexicon and noise modelling. This resulted in
an increased recognition accuracy of around 90%.

1. INTRODUCTION

Good recognition performance of isolated words over the
telephone is a major requirement to enable BT to provide useful
voice activated services. This paper describes a combination of
techniques which were used to obtain a large improvement in
recognition accuracy of town names and road names.

The main components of a speech recogniser are shown in
Figure 1. The first stage is speech capture which includes
sampling and digitally encoding the signal. The signal is filtered,
and the filter outputs are transformed to feature vectors. The
speech recogniser then uses hidden Markov models (HMMs) to
match the sequence of feature vectors to phonemes which make
up the English language. The output of this pattern matching
stage is a number of hypothetical sequences of phonemes which
then have to be matched to words in the vocabulary of the
recogniser.

Figure 1: Main components of a speech recogniser

To improve the accuracy of recognition, more robust feature
extraction, context dependent models (HMMs), a lexicon
containing pronunciation variations, and improved noise
modelling were used. The organisation of the paper is as
follows: the first three sections introduce the theoretical aspects
of robust feature extraction, triphone models and continuous
speech effects. The next section describes the use of noise

modelling and the following sections describe the experiments
performed and results which were obtained.

2. ROBUST FEATURE EXTRACTION

A speech signal is generated by convolving the excitation signal
from the lungs with the frequency response of the vocal tract.
For speech recognition it is usually the vocal tract component
which gives best discrimination between speech sounds. In most
feature extraction methods, cepstral analysis is used to extract
this vocal tract component.

There are essentially two routes for extracting the cepstrum of a
speech signal - via a discrete Fourier transform (DFT) or via
linear predictive (LP) analysis [1]. More recently, modifications
to conventional cepstral processing have attempted to include
attributes of the pyschophysical processes of human hearing into
the analysis. For example, the DFT cepstrum has been modified
to incorporate a Mel-scaled filterbank giving the so called in
Mel-frequency cepstral coefficients (MFCCs). A similar process
to the Mel filterbank is used in perceptual linear predictive
(PLP) analysis, where a set of critical-band filters are convolved
with the speech spectrum. These modify the spectrum according
to perceptual measurements of human hearing and lead to PLP
cepstrum.

The original front-end configuration consisted of conventional
8-D MFCC speech features augmented by a velocity vector and
velocity log energy term. This gave a 17 dimensional feature
vector and proved to be adequate for simple tasks. However for
the town name and road name tasks the performance and
robustness was deemed to be unsatisfactory.

Telephony speech is subject to a number of degradations such as
background acoustic noise and channel distortions. It is thus
important for any systems to be as robust as possible to these
distortions. The MFCC derived feature described earlier has no
implicit or explicit robustness. To improve this situation a two
stage improvement of the feature vector was employed and
resulted in the so called RASTA cepstral-time matrices.

2.1 Cepstral-Time Matrices (CTMs)

The cepstral-time matrix provides an alternative framework to
differential parameters for encoding the temporal variations of
speech into the feature vector [2]. Differential parameters take
into account the speech dynamics by taking a difference or
regression across static cepstral vectors. The cepstral-time
matrix is computed by taking a discrete cosine transform (DCT)
across a stack of typically 7 cepstral vectors, with the resulting
columns of the matrix representing the different temporal
regions. Static components of the speech signal are contained in



the zeroth column, with successive column containing faster and
faster speech dynamics.

For speech recognition, the lower right portion of the matrix is
usually retained as the speech feature (as illustrated by shading
in Figure 2), with the remainder discarded.

2.2 RASTA Filtering

The RASTA filter (RelAtive SpecTrAl) was first proposed by
Hermansky in 1991 [3] and is an additional front-end operation
which simultaneously reduces communication channel effects
and noise distortion by bandpass filtering the time series of
feature vectors. The RASTA filter, H(z), is implemented as an
IIR bandpass filter,
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The filter can be applied to either the log filter bank vectors or to
the MFCCs. In this implementation RASTA processing is
applied to the MFCC vector stream.

2.3 RASTA-CTMs

The combination of RASTA filtered MFCCs and cepstral-time
matrices is referred to as RASTA-CTM. These features are
generated using the conventional CTM approach with the
MFCC vector stream being RASTA filtered prior to stacking -
shown in Figure 2.
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Figure 2: Generation of CTMs

3. CONTEXT DEPENDENT MODELS

Initial attempts at building a recogniser were based on
monophone speech models. Although the system can provide an
acceptable level of performance for small tasks, it suffers
performance degradation when used for large vocabulary tasks.

This is mainly due to the inadequacy of monophones to model
context variations in an utterance. It has been shown that context
dependent models [4], provide better performance than
monophone models. However using context dependent models,
such as triphones, the number of distinct contexts can lead to a
prohibitively large number of models. Hence the main problem

in building context dependent models is maintaining a balance
between model complexity and the available training  data. To
overcome this problem model based Decision Tree Clustering
(DTC) [5] was utilised. A model based decision tree is a binary
tree in which each node in the tree (except the terminal nodes) is
associated  with a phonetic question - Figure 3.

Root node

Left context Nasal?

Right ZH?  Left Fricative?

         Right Stop?

   A_rl_1            A_rl_2     A_rl_3

A_rl_4 A_rl_5

Figure 3: Decision tree for phoneme “A”.

DTC uses a set of phonetically based questions that allows the
grouping of acoustically similar models, providing a more robust
estimates of speech models. The question set generally
determines the  phonetic group, for example fricatives, vowels,
stops, glides, etc.

A decision tree was constructed for each of the monophones in
the phoneme set. The process of building the tree was as
follows.

1. For each monophone, collect appropriate amount of
acoustic data and build a single mode HMM representing
the root node of the  tree.

2. Ask all the questions at terminal nodes and for each
question, initially split the data into two child nodes.

3. Use the data at  terminal node to  build a single mode
HMM, and hence calculate the likelihood of the model.

4. For the node under consideration, select the question that
provides the best splitting likelihood.

Continue steps 2 to 4 until a predetermined likelihood score is
reached or a threshold indicating the number of examples in the
terminating node is passed.

4. CONTINUOUS SPEECH EFFECTS

People rarely pronounce words as a concatenated list of
canonical baseform transcriptions; even the most careful speaker
deviates from the canonical as a result of articulatory
limitations. Since the recogniser relies on an accurate
representation of the words it is to recognise, knowledge of the
kinds of changes made to these baseform transcriptions would



be of great use. Two general approaches exist for the generation
of alternate phonemic transcriptions: data-driven and rule-based;
experiments detailed in this paper utilise the latter method. A
total of six general rules [6,7] were used. Table 1 shows an
example of the effect of each rule:

Rule Example

Assimilation “tin can”
/T I N K AA N/ → /T I NG K AA N/

Coalescence “would you”
/W OO D Y UU/ → /W OO J UU/

Consonant
Elision

“old man”
/O L D M AA N/→/O L M AA N/

Phonemic
Elision

“run along”
/R U N A L O NG/→/R U N L O NG/

Intrusive ‘r’ “far away”
/F AR A W AI/→/F AR R A W AI/

Allophonic
Variation

“how old”
/H OU O L D/→/H AA O L D/

Table 1: An example of each of the six rules used

Although the rules are well suited to application across word
boundaries, as suggested by the examples in Table 1, they can
also usefully be applied within words and particularly between
syllables. This is demonstrated by the directed graphs of town
name pronunciations in Figures 4, 5 and 6, where the phones of
the canonical transcription are shaded:

Figure 4: Pronunciation directed graph for R.A.F. Woodbridge

Figure 5: Pronunciation directed graph for Tewkesbary

Figure 6: Pronunciation directed graph for Aldeburgh

Baseform transcriptions of the road and town names were
checked for places where any of the rules in Table 1 could be
applied, and for each of these places, a new transcription was
generated.  New transcriptions were generated until no further
rules could be applied. Figure 4 has a number of places where
rules can be applied.  To enable rules to cascade, with one rule
allowing the application of another, rules are applied from the
end of the transcription forwards.  This has proven to be most
effective.  This is illustrated in Table 2.

Baseform: /AR AI E F W OO D B R I J/
Assimilation? ✘

✔

/AR AI E F
/AR AI E F

W OO D B R I J/
W OO B B R I J/

Allophonic
Variation?

✘

✘

✔

✔

/AR AI E F
/AR AI E F
/AR E E F
/AR E E F

W OO D B R I J/
W OO B B R I J/
W OO D B R I J/
W OO B B R I J/

Intrusive ‘r’? ✘

✘

✘

✘

✔

✔

✔

✔

/AR AI E F
/AR AI E F
/AR E E F
/AR E E F
/AR R AI E F
/AR R AI E F
/AR R E E F
/AR R E E F

W OO D B R I J/
W OO B B R I J/
W OO D B R I J/
W OO B B R I J/
W OO D B R I J/
W OO B B R I J/
W OO D B R I J/
W OO B B R I J/

Table 2: Sequence of rules applied to “R.A.F. Woodbridge”

The first rule which may be applied is assimilation, which
causes the /D/ to sound more like a /B/; this rule is applied (✔)
to one copy of the baseform and suppressed (✘ ) in another.
Each of these new transcriptions may then undergo allophonic
variation, through which the /AI/ may be pronounced as an /E/;
again, for each of the two transcriptions, the rule is applied to
one copy and suppressed in another.  Finally, the intrusive ‘r’
rule — /R/ inserted between certain vowels or diphthongs — is
applied to one copy of each transcription from the previous
stage, and suppressed in another. This yields the eight different
transcriptions described by figure 4.

5.  NOISE MODELS

Analysis of wrongly recognised utterances revealed that a
variety of noise sounds preceded and followed the utterance.
The noise sounds included breath noise, clicking noise, mains
hum, and a variety of other background noises. To recognise the
various noise sounds, the following models were trained:

• BRT breath noise
• IMP impulsive noise
• PSN pre-speech noise
• LIN line noise
• EXS extra speech
• OTN other noise

These models were included into a noise network as illustrated
in Figure 6. This better models the various noise sounds that
may precede or follow the utterances and hence improves the
recognition accuracy.

Noise network

Road or Town name
network

Noise network

Figure 6: A noise network preceding and following the road or
town name.



6. EXPERIMENTS

The effectiveness of the approaches described in this paper was
evaluated on a town name task and a road name task comprising
156 Suffolk town names and 1108 road names respectively.

The BT TADS database was used to perform the decision tree
clustering. This is a database of telephony-based utterances
including town names and road names. The talkers were
recruited from regions around the UK to provide speaker-
independent data.  By using the TADS database during DTC, the
resulting set of context dependent models was made application
specific. The training data for the models came from both the
TADS database and the Subscriber database [8] which contains
4300 sentences.

Baseline performance on the two tasks was obtained using a
speech feature comprising MFCCs 1-8 augmented by their
velocity and a velocity log energy term, resulting in a  17-D
feature vector. Monophone-based 3 state, 12 mode, diagonal
covariance HMMs were used to model the speech. This resulted
in an accuracy of 61.5% and 64.7% for the town and road name
tasks respectively (shown as experiment 1 in table 2).

The lexicon described in section 4 was then added to the
baseline set-up. This increased respective recognition accuracy
to 76.9% and 75.4% for the two tasks (shown as experiment 2 in
table 1).

The context independent monophones were then replaced by the
context dependent triphones of section 3 and noise networks of
section 5. About 450 triphones were used and were of the same
topology as the monophone models. This resulted in accuracies
of 83.2% and 79.9% for the two tasks respectively (experiment 3
in table 2).

Finally the RASTA-CTM robust front-end replaced the original
17-D feature. This increased performance to 91.4% and 86.0%
respectively (experiment 4 in table 2).

Experiment Town names Road names

1. Baseline 61.5 % 64.7 %

2. Baseline + new lexicon 76.9 % 75.4 %

3. MF1 triphones + new
lexicon + noise

83.2 % 79.9 %

4. RASTA-CTM triphones +
new lexicon +  noise

91.4 % 86.0 %

Table 2: Experiment results

Conclusions

The combination of techniques described in this paper have
improved the performance of a baseline recognition system
significantly. This has enabled the development of an automated
corporate directory system with 120,000 entries.

The original system contained no inherent robustness and as
such attained only 60% for the two tasks. The four techniques
described each attempt to improve robustness by tackling a
different problem encountered when dealing with real speech
data. These have included background noise and channel
distortions, variations in pronunciation, modeling different
background noise conditions and taking into account the context
within words. Adding this robustness to the system has been
shown to dramatically increase performance to around 90% on
the two tasks as illustrated in Figure 7.
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Figure 7: Accuracy for town and road name
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