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ABSTRACT

A combination of techniques for increasing recognition accuracy
has been developed for an automated corporate directory system
with 120,000 entries. Using a traditional recogniser an accuracy
of around 60% has previously been obtained for both a 156 town
name task and 1108 road name task. Techniques presented in
this paper comprise front-end modifications, context dependent
models, improved lexicon and noise modelling. This resulted in
an increased recognition accuracy of around 90%.

1. INTRODUCTION

Good recognition performance of isolated words over the
telephone is a mgjor requirement to enable BT to provide useful
voice activated services. This paper describes a combination of
techniques which were used to obtain a large improvement in
recognition accuracy of town names and road names.

The main components of a speech recogniser are shown in
Figure 1. The first stage is speech capture which includes
sampling and digitally encoding the signal. The signal is filtered,
and the filter outputs are transformed to feature vectors. The
speech recogniser then uses hidden Markov models (HMMs) to
meatch the sequence of feature vectors to phonemes which make
up the English language. The output of this pattern matching
stage is a number of hypothetical sequences of phonemes which
then have to be matched to words in the vocabulary of the
recogniser.
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Figure 1: Main components of a speech recogniser

To improve the accuracy of recognition, more robust feature
extraction, context dependent models (HMMs), a lexicon
containing pronunciation variations, and improved noise
modelling were used. The organisation of the paper is as
follows: the first three sections introduce the theoretical aspects
of robust feature extraction, triphone models and continuous
speech effects. The next section describes the use of noise

modelling and the following sections describe the experiments
performed and results which were obtained.

2. ROBUST FEATURE EXTRACTION

A speech signal is generated by convolving the excitation signal
from the lungs with the frequency response of the vocal tract.
For speech recognition it is usualy the vocal tract component
which gives best discrimination between speech sounds. In most
feature extraction methods, cepstral analysis is used to extract
this vocal tract component.

There are essentially two routes for extracting the cepstrum of a
speech signal - via a discrete Fourier transform (DFT) or via
linear predictive (LP) analysis [1]. More recently, modifications
to conventional cepstral processing have attempted to include
attributes of the pyschophysical processes of human hearing into
the analysis. For example, the DFT cepstrum has been modified
to incorporate a Mel-scaled filterbank giving the so called in
Mel-frequency cepstral coefficients (MFCCs). A similar process
to the Mel filterbank is used in perceptual linear predictive
(PLP) andlysis, where a set of critical-band filters are convolved
with the speech spectrum. These modify the spectrum according
to perceptual measurements of human hearing and lead to PLP
cepstrum.

The original front-end configuration consisted of conventional
8-D MFCC speech features augmented by a velocity vector and
velocity log energy term. This gave a 17 dimensional feature
vector and proved to be adequate for simple tasks. However for
the town name and road name tasks the performance and
robustness was deemed to be unsatisfactory.

Telephony speech is subject to a number of degradations such as
background acoustic noise and channd distortions. It is thus
important for any systems to be as robust as possible to these
distortions. The MFCC derived feature described earlier has no
implicit or explicit robustness. To improve this situation a two
stage improvement of the feature vector was employed and
resulted in the so called RASTA cepstral-time matrices.

2.1 Cepstral-Time Matrices (CTMSs)

The cepstral-time matrix provides an aternative framework to
differential parameters for encoding the temporal variations of
speech into the feature vector [2]. Differential parameters take
into account the speech dynamics by taking a difference or
regression across static cepstral vectors. The cepstral-time
matrix is computed by taking a discrete cosine transform (DCT)
across a stack of typically 7 cepstral vectors, with the resulting
columns of the matrix representing the different temporal
regions. Static components of the speech signal are contained in



the zeroth column, with successive column containing faster and  in building context dependent models is maintaining a balance
faster speech dynamics. between model complexity and the available training data. To

overcome this problem model based Decision Tree Clustering
(DTC) [5] was utilised. A model based decision tree is a binary

tree in which each node in the tree (except the terminal nodes) is
associated with a phonetic question - Figure 3.

2.2 RASTA Filtering Root node

The RASTA filter (RelAtive SpecTrAl) was first proposed by
Hermansky in 1991 [3] and is an additional front-end operation
which simultaneously reduces communication channel effects
and noise distortion by bandpass filtering the time series of
feature vectors. The RASTA filter, H(2), is implemented as an
IR bandpassfilter,

For speech recognition, the lower right portion of the matrix is
usually retained as the speech feature (as illustrated by shading
in Figure 2), with the remainder discarded.
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23 RASTA-CTMs Figure 3: Decision tree for phoneme “A”.

The combination of RASTA filtered MFCCs and cepstral-time

matrices is referred to as RASTA-CTM. These features afeTC uses a set of phonetically based questions that allows the

generated using the conventional CTM approach with thgrouping of acoustically similar models, providing a more robust

MFCC vector stream being RASTA filtered prior to stacking €stimates of speech models. The question set generally

shown in Figure 2. determines the phonetic group, for example fricatives, vowels,
stops, glides, etc.

CT™M
selection * A decision tree was constructed for each of the monophones in
RASTA Framd DCT & ]Ezﬁovr\)lr;oneme set. The process of building the tree was as
Filter » Stak ’ Truncatior )
1. For each monophone, collect appropriate amount of
MFCC CTM acoustic data and build a single mode HMM representing
vectors the root node of the tree.
2. Ask all the questions at terminal nodes and for each
eee question, initially split the data into two child nodes.
3. Use the data at terminal node to build a single mode
HMM, and hence calculate the likelihood of the model.
Figure 2: Generation of CTMs 4. For the node under consideration, select the question that

provides the best splitting likelihood.

Continue steps 2 to 4 until a predetermined likelihood score is

3. CONTEXT DEPENDENT MODELS reached or a threshold indicating the number of examples in the

. - ) terminating node is passed.
Initial attempts at building a recogniser were based on

monophone speech models. Although the system can provide an
acceptable level of performance for small tasks, it suffers

performance degradation when used for large vocabulary tasks. 4. CONTINUOUS SPEECH EFFECTS

This is mainly due to the inadequacy of monophones to modekople rarely pronounce words as a concatenated list of
context variations in an utterance. It has been shown that conteshonical baseform transcriptions; even the most careful speaker
dependent models [4], provide better performance thafeviates from the canonical as a result of articulatory
monophone models. However using context dependent modelfitations. Since the recogniser relies on an accurate
such as triphones, the number of distinct contexts can lead teepresentation of the words it is to recognise, knowledge of the
prohibitively large number of models. Hence the main problemkinds of changes made to these baseform transcriptions would



be of great use. Two general approaches exist for the generation Baseform: /AR Al E F WOODBRIJ/
of aternate phonemic transcriptions: data-driven and rule-based; Assimilation? 0 /JARAIEE WOODBRIJ/
experiments detailed in this paper utilise the latter method. A 0 /JARAIEE WOOBBRIJ/
total of six general rules [6,7] were used. Table 1 shows an Allophonic 0 /ARAIEF WOODBRIJ
example of the effect of each rule: Variation? 0 /ARAIEF  WOOBBRIJ
Rule Example 0 /AREEF WOODBRIJ
p—p _ O /AREEF WOOBBRIJ
Assimiltion T INK AR N;‘“ NG K AA N/ Intrusive 'r'? O /ARAIEF  WOODBRIJ/
— _ — O /ARAIEF WOOBBRIJ
Coalescencs “would you” 0 /AREEF WOODBRIJ
/W OODY UU/ - /W 00J uUu/ O /AREEF WOOBBRIJ
Consonant “old man” O /ARRAIEF WOODBRIJ
Elision JOLDM AAN/~/OL M AA N/ 0 /JARRAIEF  WOOBBRIJ
ev—r run along’ 0O /ARREEF WOODBRIJ
1]
Elision /RUNAL ONG/-/RUNL O NG/ /ARREEF WOOBBRIY
Intrusive ‘' “far away” Table 2: Sequence of rules applied to “R.A.F. Woodbridge”
IFARAWAI/-/FARRA W AI/
Allophonic “how old” The first rule which may be applied is assimilation, which
Variation HOUOLD/-/HAAQOLD/ causes the /D/ to sound more like a /B/; this rule is appligd (

to one copy of the baseform and suppresseyl i6 another.
Each of these new transcriptions may then undergo allophonic
variation, through which the /Al/ may be pronounced as an /E/;
Although the rules are well suited to application across worggain, for each of the two transcriptions, the rule is applied to
boundaries, as suggested by the examples in Table 1, they eae copy and suppressed in another. Finally, the intrusive ‘r’
also usefully be applied within words and particularly betweerule — /R/ inserted between certain vowels or diphthongs — is
syllables. This is demonstrated by the directed graphs of tovapplied to one copy of each transcription from the previous
name pronunciations in Figures 4, 5 and 6, where the phonessgfge, and suppressed in another. This yields the eight different
the canonical transcription are shaded: transcriptions described by figure 4.

5. NOISE MODELS

Analysis of wrongly recognised utterances revealed that a
variety of noise sounds preceded and followed the utterance.
The noise sounds included breath noise, clicking noise, mains
hum, and a variety of other background noises. To recognise the
various noise sounds, the following models were trained:

Table 1: An example of each of the six rules used

Figure 4: Pronunciation directed graph for R.A.F. Woodbridge

« BRT breath noise
e IMP impulsive noise
@ @ @ @ @ @ @ @ « PSN pre-speech noise
@) * LIN line noise
¢ EXS extra speech
Figure5: Pronunciation directed graph for Tewkesbary . oTN other noise

These models were included into a noise network as illustrated
in Figure 6. This better models the various noise sounds that
may precede or follow the utterances and hence improves the
recognition accuracy.

Figure 6: Pronunciation directed graph for Aldeburgh
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Baseform transcriptions of the road and town names were

checked for places where any of the rules in Table 1 could be
applied, and for each of these places, a new transcription was

Road or Town name
network

448 4

allowing the application of another, rules are applied from the

end of the transcription forwards. This has proven to be mogfq,re 6: A noise network preceding and following the road or
effective. This is illustrated in Table 2. town name



6. EXPERIMENTS

The effectiveness of the approaches described in this paper was
evaluated on atown name task and a road name task comprising
156 Suffolk town names and 1108 road names respectively.

The BT TADS database was used to perform the decision tree
clustering. This is a database of telephony-based utterances
including town names and road names. The talkers were
recruited from regions around the UK to provide speaker-
independent data. By using the TADS database during DTC, the
resulting set of context dependent models was made application
specific. The training data for the models came from both the
TADS database and the Subscriber database [8] which contains
4300 sentences.

Baseline performance on the two tasks was obtained using a
speech feature comprising MFCCs 1-8 augmented by their
velocity and a velocity log energy term, resulting in a 17-D
feature vector. Monophone-based 3 state, 12 mode, diagona
covariance HMMs were used to model the speech. This resulted
in an accuracy of 61.5% and 64.7% for the town and road name
tasks respectively (shown as experiment 1 in table 2).

The lexicon described in section 4 was then added to the
baseline set-up. This increased respective recognition accuracy
to 76.9% and 75.4% for the two tasks (shown as experiment 2 in
table 1).

The context independent monophones were then replaced by the
context dependent triphones of section 3 and noise networks of
section 5. About 450 triphones were used and were of the same
topology as the monophone models. This resulted in accuracies
of 83.2% and 79.9% for the two tasks respectively (experiment 3
intable 2).

Finally the RASTA-CTM robust front-end replaced the original
17-D feature. This increased performance to 91.4% and 86.0%
respectively (experiment 4 in table 2).

Experiment Town names | Road names
1. Baseline 61.5 % 64.7 %
2. Basdline + new lexicon 76.9 % 75.4 %
3. MF1 triphones + new | 83.2% 79.9 %
lexicon + noise
4. RASTA-CTM triphones + | 91.4 % 86.0 %
new lexicon + noise
Table 2: Experiment results
Conclusions

The combination of techniques described in this paper have
improved the performance of a baseline recognition system
significantly. This has enabled the development of an automated
corporate directory system with 120,000 entries.

The origind system contained no inherent robustness and as
such attained only 60% for the two tasks. The four techniques
described each attempt to improve robustness by tackling a
different problem encountered when dealing with real speech
data. These have included background noise and channel
distortions, variations in pronunciation, modeling different
background noise conditions and taking into account the context
within words. Adding this robustness to the system has been
shown to dramatically increase performance to around 90% on
the two tasks asillustrated in Figure 7.
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Figure 7: Accuracy for town and road name
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