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ABSTRACT

Prosodic cues (namely, fundamental frequency, energy and du-
ration) provide important information for speech. For a tonal
language such as Chinese, fundamental frequency (F0) plays
a critical role in characterizing tone as well, which is an es-
sential phonemic feature. In this paper, we describe our work
on duration and tone modeling for telephone-quality continuous
Mandarin digits, and the application of these models to improve
recognition. The duration modeling includes a speaking-rate
normalization scheme. A novelF0 extraction algorithm is de-
veloped, and parameters based on orthonormal decomposition
of theF0 contour are extracted for tone recognition. Context de-
pendency is expressed by “tri-tone” models clustered into broad
classes. A 20.0% error rate is achieved for four-tone classifi-
cation. Over a baseline recognition performance of 5.1% word
error rate, we achieve 31.4% error reduction with duration mod-
els, 23.5% error reduction with tone models, and 39.2% error
reduction with duration and tone models combined.

1. INTRODUCTION

Prosody is mainly correlated with fundamental frequency (F0),
duration and energy features of a signal. It clearly conveys lin-
guistic information about speech on various levels: sentence,
word, syllable, etc. We are becoming increasingly interested in
the use of prosodic aspects of speech to improve speech recog-
nition. In this regard, we feel that continuous Mandarin digits
form an excellent domain in which to carry out our initial study.
First, digit strings have relatively simple sentence level prosodic
structure, so we can focus on characterizing word level prosodic
features as a first step. Second,F0 plays a critical role in de-
termining tones for Mandarin syllables, which is important to
Mandarin recognition. Third, digits cover all four lexical tones
in Mandarin; thus continuous digit strings provide an adequate
domain in which to begin to study tones and their contextual ef-
fects. We plan to extend our study to more linguistically rich
domains such as MandarinGALAXY [4], in which spontaneous
conversations were carried out between a subject and a computer
for information seeking. It will be interesting to incorporate the
phrase and sentence level features into prosodic modeling.

Mandarin digit recognition has been investigated by many re-
searchers [5] [6]. However, we are unable to find reported re-
sults under similar conditions as ours (speaker-independent, con-

1This research was supported by DARPA under contract N66001-96-C-8526,
monitored through Naval Command, Control and Ocean Surveillance Center.

tinuous, and telephone-quality). Continuous digit recognition is
more difficult for Mandarin than for English for several reasons:

1. Each digit is pronounced as a mono-syllable, and half of
them have only sonorant sounds.

2. Three digits are pronounced as single vowels: “yi12”(1),
“er4”(2) and “wu3”(5). Segmentation of vowel vowel se-
quence such as “yi1 yi1” is difficult, especially due to fre-
quent absence of glottal stops in continuous speech. The
counter problem of vowel splitting also exists. This leads to
high insertion and deletion error rates for these three digits.

3. Digits “yi1” and “wu3” also tend to be obscured in coartic-
ulation with other digits, such as in “qi1(7) yi1”, “liu4(6)
wu3” and “jiu3(9) wu3”, etc. This leads to even higher er-
rors for “yi1” and “wu3”.

4. There exist several confusing digit pairs, such as “er4 /
ba1(8)”, “liu4 / jiu3”, and “liu4 / ling2(0)”, etc., partially
due to the poor quality of telephone speech.

In this paper, we develop a duration model and a tone model
aimed at reducing these errors. Duration modeling is motivated
by the observation that insertion and deletion errors generally
produce unusually long or short hypothesized words, resulting
in bad duration scores. In order for this simple strategy to be
effective, it is advantageous to reduce the variances for the dura-
tion measurements, and we propose a normalization scheme to
achieve this. Tone modeling is developed to better discriminate
confusing candidates, which often differ in tone. We find that
the tone model also helps reduce some insertion and deletion er-
rors, i.e., theF0 contour pattern is clearly different for “wu3”
and “wu3 wu3”, even though the spectral shape and duration in
the two cases could be very similar. We applied both models to
post-process the recognizerN -best list. They yielded substan-
tial performance gains over a baseline system individually, with
further improvement realized when the two were combined.

2. CORPUS

The corpus3 was collected automatically by recording phone
calls from native Chinese speakers, and the waveform was sam-
pled at 8 kHz. A different list of 30 random phone numbers
(containing 9 digits) and 30 random digit strings (containing 5-
10 digits) was given to each participant, and the subjects were

2Chinese pin-yin representation, augmented with tone.
3provided by Applied Language Technologies (ALTech) in Boston.



DATA SET TRAIN TEST
No. of strings 3923 355
No. of speakers 71 6

Table 1: Summary of the corpus.

instructed to read from the list in a naturally speaking way. Re-
fer to Table 1 for a summary of the corpus. The average string
length is 8.1 digits.

3. EXPERIMENTAL FRAMEWORK

The baseline recognizer is configured from theSUMMIT

segment-based system [2]. There are 11 words in our vocabulary,
including the alternative pronunciation “yao1” for digit “one”.
Chinese syllable initials and finals are chosen as the phone model
units, with the addition of closure, inter-word pause, glottal stop,
and nasal ending models, introduced by phonological rules. To
fully exploit the small vocabulary size, digit-specific segment
and boundary models are used. We achieved 5.1% word error
rate (34.1% string error rate) on the test data with anA∗ search.

We have found that theN -best list has great potential for im-
proved performance. With a perfect post-selector, we could
achieve less than 1% word error rate (7% string error rate) with
a10-best list. Thus, instead of incorporating the scores from du-
ration and tone models into an early search stage, we decided to
apply them in post-processing the10-best outputs.

The post-processing scheme is similar to that proposed in [3].
For each word in anA∗ path, the duration and/or tone scores are
added to the total score, with the total adjustment normalized by
the number of words (to avoid bias toward shorter strings). The
N -best hypotheses are then resorted according to the adjusted
total scores to give a new “best” sentence hypothesis. Context-
dependent model scores can also be applied simply by convert-
ing a hypothesis into its context-dependent form, with context
obtained from its surrounding hypotheses. In this way, an in-
correct hypothesis is likely to result in bad scores both for its
own wrong identity and as context for its neighbors. We also
have a scaling factor to weight the scores contributed by duration
and/or tone models, which can be optimized empirically based
on recognition performance.

4. DURATION MODELING

Although logarithmic duration is already a feature in oursegment
model, it is likely to be poorly utilized in the principle compo-
nent analysis, because of the high dimensionality of the segment
feature vector, as well as the large variance due to, among other
things, different speaking rate. Motivated by the observation that
insertion and deletion errors generally produce unusually long or
short hypothesized words, we isolate theword level duration as a
separate feature to model. However, we only take the final part of
a syllable as the “word” duration, with the belief that the syllable
final is more stable and less subject to segmentation errors.

In order for the duration model to be more sensitive to insertion
and deletion errors, it is critical to reduce the inherent duration
variances caused by natural variations among different speak-
ers. For simplicity, we assume that each digit in an utterance

System Configuration WER(%) SER(%)
Baseline 5.1 34.1
+ Unorm. Dur. 3.9 26.8
+ Norm. Dur. w/ Est. Spk. Rate 3.5 24.8
+ Norm. Dur. w/ “True” Spk. Rate 2.9 20.3

Table 2: Comparison of recognition performance with different
duration models. All conditions except the baseline have sepa-
rate word-level duration models.

has roughly the same speaking rate. Therefore, we propose to
normalize the duration of each word with respect to an estimated
sentence levelspeaking rate. Given a phonetic alignment of an
utterance, the speaking rate is estimated as

Speaking Rate =
µDUR(Words in a sentence)
µDUR(Words in corpus)

.

When computing the sentence mean, each word’s duration is first
normalized separately for that digit’s mean duration to avoid bias
caused by the content of the utterance (some digits tend to be in-
trinsically longer than others). However, the phonetic alignments
for an utterance are not available in actual recognition. We de-
veloped a simple algorithm to estimate the speaking rate from
theN -best list instead. We first obtain statistics of adjusted du-
rations for all the finals in theN -best paths. After discarding
anomalous tokens, the average of the remaining “reliable” can-
didates is then used to compute the speaking rate.

The duration distribution is modeled by mixtures of Gaussians.
Duration scores from the classifier are passed on to post-process
theN -best list, as described in the previous section. We obtained
significant performance improvement over the baseline, as sum-
marized in Table 2. However, the performance using speaking
rate estimated from theN -best list is significantly worse than
that using “true” speaking rate (estimated from forced align-
ments). We are continuing to refine the estimation algorithm to
reduce this gap.

5. TONE MODELING

Tone recognition is an important part of Chinese speech recogni-
tion. It is a challenging research problem, due to (1) the difficul-
ties of extracting fundamental frequency reliably, especially for
telephone-quality speech, (2) the discontinuity of the parameter
space due to the voiced/unvoiced dichotomy, as well as the need
for normalization to account for the wide range ofF0 variations
across speakers, and (3) the complex context dependencies of
tone expression, mediated through tone sandhi rules.

5.1. F0 Extraction

Fundamental frequency extraction is particularly difficult for
telephone-quality speech, due especially to the fact that the fun-
damental is often weak or missing. To address this problem,
we have developed a new pitch-extraction algorithm, which is
based on the principle that harmonics will be spaced by the same
amount on alogarithmic frequency scale regardless of the fun-
damental. More formally, if a signal has periodic peaks spaced
at periodP , then, on a logarithmic scale, the peaks will occur
at log(P ), log(P ) + log(2), log(P ) + log(3), ..., etc. Thus the
period P only affects thepositionof the first peak. We sample
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Figure 1: Windowed waveform, FT, and adjusted DLFT (refer
to the text for details) for a pulse train and a speech signal.

a narrow band spectrum in the low-frequency region[fs, fe] at
linear intervals in the logarithmic frequency dimension. We de-
fine this representation as adiscrete logarithmic Fourier trans-
form (DLFT). Given a Hamming windowed speech signalx(n)
(n = 0, 1, ..., Nw−1), the DLFT is computed as

Xi =
1
Nw

Nw−1∑
n=0

x(n)e−jωin (i = 0, 1, . . . , N−1),

where

ωi = 2πe(lnfs+i·dlnf) · Ts (i = 0, 1, ..., N − 1),

dlnf = (lnfe − lnfs)/(N−1),

N is the size of the DLFT, andTs is the sampling period of
the waveform. Figure 1 shows the waveform, Fourier transform
and DLFT for a200Hz pulse train and a voiced speech signal.
The DLFT of the speech signal, sampled between150 and1500
Hz, has been normalized byµlaw conversion to flatten out the
formant peaks. TheweightedDLFT of the pulse train, which
is used as atemplatefor F0 extraction as described later, was
normalized such that each lobe has roughly equal area.

Because the spectral change due to vocal tract resonances should
be relatively small between adjacent frames, we expect simi-
lar DLFT spectra except for an offset dependent onlog(F0).
A cross-correlation computation provides arobust estimate of
the relative shift∆log(F0). We similarly compute a cross-
correlation between each frame and the template, to obtainF0
estimates. Both parameters are considered jointly in determin-
ing theF0 value, taking into account continuity constraints.

Our current pitch extraction algorithm works as follows. Within
a voiced region, provided either by a phonetic transcription or by
a voiced/unvoiced decision algorithm, we first try to find theF0
value for an anchor point, usually the first frame. All the frames

in the region will each vote on theF0 value for this anchor, based
on its correlation with the template and thecumulative∆log(F0)
from the anchor. TheF0 for the anchor is then taken as the me-
dian of all the votes, andF0 values for the other frames are com-
puted from the anchorF0 and relative∆log(F0). We feel that
this method can ensure a smoothF0 contour within the voiced
region because of therobust∆log(F0) estimation between adja-
cent frames. However, theF0 value for the anchor frame could
still have errors (when the majority of the frames make errors
in their votes). We perform a sentence level smoothing to fur-
ther correct potentially doubled/halvedF0 segments. It is possi-
ble that theF0 contour is doubled/halved throughout the whole
sentence. However, this type of error can be corrected by pitch
normalization, and thus is less harmful to tone recognition.

We did not formally evaluate our pitch tracking algorithm. How-
ever, we feel that its performance in tone recognition is a valid
indirect assessment criterion. We have manually examined the
agreement between the extracted pitch contour and harmonic
peaks in the DLFT spectrogram for many utterances, as shown
in Figure 2, to ensure that the algorithm is performing well.

5.2. Tone Features

Tone is mainly dependent on theF0 contour pattern, i.e., its av-
erage, slope, and curvatures. There are various ways to quantify
these features in a segment-base system, by either fitting theF0
contour with a certain type of function, or projecting it onto some
basis functions. We have chosen the first four coefficients of the
discrete Legendre transformation as our tone features, following
the example of Chen & Wang [1], who describe the decomposi-
tion procedure in detail. They used the transformation for Man-
darin pitch coding.

In a speaker-independent system, it is necessary to normalize the
absoluteF0 with respect to the average over the entire utterance,
to reduce across-speaker differences. We determined empirically
whether to adjust by a ratio or a sum. Our data indicate that
the ratio gives smaller variances for the pitch-related features we
have chosen; thus the Legendre coefficients arescaledaccording
to the averageF0 of the utterance.

Normalized duration, as introduced in the previous section, is
also included as a basic segment feature. The duration feature
does not contribute significantly to tone discrimination, but it is
essential to limit insertion and deletion errors in recognition.

A principle component analysis is applied to our five-
dimensional tone feature vector, and mixtures of diagonal Gaus-
sians are used to model the distributions.

5.3. Context

Each of the four Mandarin lexical tones has a basicF0 pat-
tern [7]. However, the actual pitch contour for a tone can vary
dramatically in different tonal contexts. In order to characterize
contextual effects systematically, we performed a clustering ex-
periment on “tri-tone” models. Besides the four tones, we also
included a “blank” context to represent sentence start, sentence
end and long inter-word pauses, resulting in 100 “tri-tone” mod-
els (5×4×5).

The cluster tree shows that the models divide naturally into four



Figure 2: Waveform,µlawed DLFT spectrogram, extractedF0 contour, and phonetic transcription for the Mandarin digit string
“ling2 liu4 qi1 jiu3 wu3 qi1 er4 qi1 er4”(067957272).

No. of Classes 4 21 51 100

Error Rate (%) 20.0 20.2 20.0 20.7

Table 3: Classification error rate for tone models with different
number of “tri-tone” classes.

System Configuration WER(%) SER(%)
Baseline 5.1 34.1
+ Duration Model 3.5 24.8
+ “Tri-tone” Model (21 classes) 3.9 25.9
+ Both Models 3.1 21.1

Table 4: Summary of recognition results for different systems.

major categories, each corresponding to a lexical tone class. An
exception is the well-known tone-sandhi rule that third tone be-
comes second tone when preceding third tone. We can obtain
merged tone classes of different levels of detail from the cluster
tree, by varying the distance threshold. We experimented with 4,
21, 51 and 100 context-dependent tone classes. Refer to Table 3
for a summary of four-tone classification results. It seems that
these tone models have roughly the same performance, except
for a slightly higher error rate for the100-class model, probably
due to under-training. Notice that the4-class context-dependent
tone model is different from a context-independent4-tone model
in that the tone-sandhi rule for third tone is taken into considera-
tion. The context-independent model has 22.7% error rate.

6. WORD RECOGNITION PERFORMANCE

Table 4 summarizes the recognition performance with the dura-
tion model, the tone model, and both models. Experiments show
that the tone model with 21 classes has a small gain over the
others in recognition. This might be because it is more sensi-
tive to contexts than the4-class model and more robust than the
51-class model in post-processing theN -best list. It is encourag-
ing to see that, when used in conjunction, the duration and tone
models yielded further performance gains.

7. SUMMARY

We have built a duration model and a tone model for the con-
tinuous Mandarin digit task, and obtained substantial perfor-

mance gains by applying them to post-process theN -best out-
puts of a baseline system. This demonstrates the potential of us-
ing prosodic features for improved speech recognition. We also
developed a new robust pitch extraction algorithm, particularly
suitable for telephone quality speech. In this study, we have as-
sumed the prosody to be stable throughout the utterance. In fact,
even digit strings could have various prosodic structures, such
as pauses in phone numbers and long digit strings. It will be
interesting to incorporate these factors into prosodic modeling.
Eventually, we plan to extend this work to more linguistically
rich domains such as MandarinGALAXY , where the influence of
sentence level prosody may play an important role.
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