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ABSTRACT tinuous, and telephone-quality). Continuous digit recognition is

more difficult for Mandarin than for English for several reasons:
Prosodic cues (hamely, fundamental frequency, energy and du-

ration) provide important information for speech. For a tonal
language such as Chinese, fundamental frequehgy glays

a critical role in characterizing tone as well, which is an es-
sential phonemic feature. In this paper, we describe our work2. Three digits are pronounced as single vowels: 2(l),

on duration and tone modeling for telephone-quality continuous  “er4”(2) and “wu3”(5). Segmentation of vowel vowel se-
Mandarin digits, and the application of these models to improve  quence such as “yil yil” is difficult, especially due to fre-
recognition. The duration modeling includes a speaking-rate  quent absence of glottal stops in continuous speech. The
normalization scheme. A novél, extraction algorithm is de- counter problem of vowel splitting also exists. This leads to
veloped, and parameters based on orthonormal decomposition high insertion and deletion error rates for these three digits.
of the Fyy contour are extracted for tone recognition. Context de-
pendency is expressed by “tri-tone” models clustered into broad*"
classes. A 20.0% error rate is achieved for four-tone classifi-
cation. Over a baseline recognition performance of 5.1% word
error rate, we achieve 31.4% error reduction with duration mod-
els, 23.5% error reduction with tone models, and 39.2% error4. There exist several confusing digit pairs, such as “er4 /
reduction with duration and tone models combined. bal(8)", “liu4 / jiud”, and “liu4 / ling2(0)", etc., partially

due to the poor quality of telephone speech.
1. INTRODUCTION poor quatly otfelephone sp

Prosody is mainly correlated with fundamental frequerigy)( " this paper, we develop a duration model and a tone model
duration and energy features of a signal. It clearly conveys lir@imed at reducing these errors. Duration modeling is motivated
guistic information about speech on various levels: sentencBY the observation that insertion and deletion errors generally
word, syllable, etc. We are becoming increasingly interested jproduce unusually long or short hypothesized words, resulting
the use of prosodic aspects of speech to improve speech recb'%—ba‘_j du_re_ltlon scores. In order for this S|m_ple strategy to be
nition. In this regard, we feel that continuous Mandarin digit$TTective, itis advantageous to reduce the variances for the dura-
form an excellent domain in which to carry out our initial study.fion measurements, and we propose a normalization scheme to
First, digit strings have relatively simple sentence level prosodigchieve this. Tone modeling is developed to better discriminate
structure, so we can focus on characterizing word level prosodf@nfusing candidates, which often differ in tone. We find that
features as a first step. Secorf@, plays a critical role in de- the to_ne model also helps reduce_ some mse_rtlon and deletion er-
termining tones for Mandarin syllables, which is important to©rs: i-e., thefy contour pattern is clearly different for “wu3”
Mandarin recognition. Third, digits cover all four lexical tones@nd “wu3 wu3", even though the spectral shape and duration in
in Mandarin; thus continuous digit strings provide an adequaf&® two cases could be very similar. We applied both models to
domain in which to begin to study tones and their contextual eff0St-process the recognizai-best list. They yielded substan-
fects. We plan to extend our study to more linguistically richfia! performance gains over a baseline system individually, with
domains such as Mandar@aLAXY [4], in which spontaneous further improvement realized when the two were combined.
conversations were carried out between a subject and a computer 2 CORPUS

for information seeking. It will be interesting to incorporate the ’

phrase and sentence level features into prosodic modeling.  The corpud was collected automatically by recording phone

S . . . calls from native Chinese speakers, and the waveform was sam-
h < . ) !
Mandarin digit recognition has been investigated by many re_led at 8 kHz. A different list of 30 random phone numbers

searchers [5] [6]. However, we are unable to find reported r . L S o
sults under similar conditions as ours (speaker-independent, ¢ pn'Fa!nlng 9 d'g.'ts) and 30 ra”d‘.’”_‘ digit strings (cont_alnlng 5
digits) was given to each participant, and the subjects were

1. Each digit is pronounced as a mono-syllable, and half of
them have only sonorant sounds.

Digits “yi1” and “wu3” also tend to be obscured in coartic-
ulation with other digits, such as in “qi1(7) yil”, “liu4(6)
wu3” and “jiu3(9) wu3”, etc. This leads to even higher er-
rors for “yil” and “wu3".

1This research was supported by DARPA under contract N66001-96-C-8526, 2Chinese pin-yin representation, augmented with tone.
monitored through Naval Command, Control and Ocean Surveillance Center.  3provided by Applied Language Technologies (ALTech) in Boston.



| DATA SET | TRAIN | TEST | | System Configuration | WER(%) | SER(%) |

No. of strings 3923 355 Baseline 51 34.1
No. of speakerg 71 6 + Unorm. Dur. 3.9 26.8
+ Norm. Dur. w/ Est. Spk. Rate 35 24.8

Table 1: Summary of the corpus. + Norm. Dur. w/ “True” Spk. Rate 2.9 20.3

Table 2: Comparison of recognition performance with different
instructed to read from the list in a naturally speaking way. Reduration models. All conditions except the baseline have sepa-
fer to Table 1 for a summary of the corpus. The average stringite word-level duration models.
length is 8.1 digits.

3. EXPERIMENTAL FRAMEWORK has rogghly the same speaking rate. _ Therefore, we propose to
normalize the duration of each word with respect to an estimated

The baseline recognizer is configured from tsemmiT  Sentence Ievedpeaking rate. _Giverl a phonetic alignment of an
segment-based system [2]. There are 11 words in our vocabulafjterance, the speaking rate is estimated as

including the alternative pronunciation “yaol” for digit “one”.

Chinese syllable initials and finals are chosen as the phone model  Speaking Rate =
units, with the addition of closure, inter-word pause, glottal stop,

and nasal ending models, introduced by phonological rules. Myhen computing the sentence mean, each word’s duration is first
fully exploit the small vocabulary size, digit-specific segmenhormalized separately for that digit's mean duration to avoid bias

and boundary models are used. We achieved 5.1% word erfggused by the content of the utterance (some digits tend to be in-
rate (34.1% string error rate) on the test data wittdarsearch.  trinsically longer than others). However, the phonetic alignments

. . . for an utterance are not available in actual recognition. We de-

We have found that théV-best list has great potential for im- veloped a simple algorithm to estimate the speaking rate from

2::?]\{:\% Ll):srfso:rr]nae:‘nig W\é\lr'éheﬁoﬁigfem(?%fs;ﬁﬁlece:tr?gr \r,;?e;: S\ztl e N-best list instead. We first obtain statistics of adjusted du-
0 0 Y rations for all the finals in théV-best paths. After discarding

raalti(grt:z‘?clil?;nzhr:zi d'glsst?;itgl an'r;;(?lrng'rgﬁ g:z Sgo\:viségggu'nomalous tokens, the average of the remaining “reliable” can-
Y ge, Yates is then used to compute the speaking rate.

apply them in post-processing the-best outputs.

upur(Words in a sentence)
wpur(Words in corpus)

he duration distribution is modeled by mixtures of Gaussians.
uration scores from the classifier are passed on to post-process
e N-best list, as described in the previous section. We obtained

The post-processing scheme is similar to that proposed in [
For each word in aml* path, the duration and/or tone scores areEh
added to the total score, with the total adjustment normalized by ... - -
the number of words (to avoid bias toward shorter strings). Th%fgnlflcant performance improvement over the baseline, as sum

N-best hypotheses are then resorted according to the adjus{rnglzed in Table 2. However, the performance using speaking

. N . . e estimated from thé&/-best list is significantly worse than

total scores to give a new “best” sentence hypothesis. Conte>§- S, ) . .
dependent model scores can also be applied simply by conver at using “true” speaking rate (estimated from forced align-
aep LT pp Py Dy rﬁents). We are continuing to refine the estimation algorithm to
ing a hypothesis into its context-dependent form, with contex .

. . . ! reduce this gap.
obtained from its surrounding hypotheses. In this way, an in-
correct hypothesis is likely to result in bad scores both for its 5. TONE MODELING
own wrong identity and as context for its neighbors. We also
have a scaling factor to weight the scores contributed by duratiofone recognition is an important part of Chinese speech recogni-

and/or tone models, which can be optimized empirically baseiibn. Itis a challenging research problem, due to (1) the difficul-

on recognition performance. ties of extracting fundamental frequency reliably, especially for
telephone-quality speech, (2) the discontinuity of the parameter
4. DURATION MODELING space due to the voiced/unvoiced dichotomy, as well as the need

for normalization to account for the wide rangefGf variations
Although logarithmic duration is already a feature in segment  across speakers, and (3) the complex context dependencies of
model, it is likely to be poorly utilized in the principle compo- tone expression, mediated through tone sandhi rules.
nent analysis, because of the high dimensionality of the segment
feature vector, as well as the large variance due to, among otferl. Fjy Extraction

things, different speaking rate. Motivated by the observation that

insertion and deletion errors generally produce unusually long gindamental frequency extraction is particularly difficult for
short hypothesized words, we isolate therd level duration asa t€/éPhone-quality speech, due especially to the fact that the fun-

separate feature to model. However, we only take the final part §2mental is often weak or missing. To address this problem,

a syllable as the “word” duration, with the belief that the syllableVe have developed a new pitch-extraction algorithm, which is

final is more stable and less subject to segmentation errors. Pased on the principle that harmonics will be spaced by the same
amount on dogarithmicfrequency scale regardless of the fun-

In order for the duration model to be more sensitive to insertiodamental. More formally, if a signal has periodic peaks spaced
and deletion errors, it is critical to reduce the inherent duratioat period P, then, on a logarithmic scale, the peaks will occur
variances caused by natural variations among different speadtiog(P), log(P) + log(2), log(P) + log(3), ..., etc. Thus the
ers. For simplicity, we assume that each digit in an utteranqggeriod P only affects thposition of the first peak. We sample
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We did not formally evaluate our pitch tracking algorithm. How-
ever, we feel that its performance in tone recognition is a valid
indirect assessment criterion. We have manually examined the
agreement between the extracted pitch contour and harmonic
o 100 200 300 00 500 % 100 200 300 400 500 peaks in the DLFT spectrogram for many utterances, as shown
Logrithmic Frequency Index Logrithmic Frequency Index . ) . . .
in Figure 2, to ensure that the algorithm is performing well.

Figure 1. Windowed waveform, FT, and adjusted DLFT (refer >
to the text for details) for a pulse train and a speech signal. 5.2. Tone Features
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Tone is mainly dependent on tli§ contour pattern, i.e., its av-

erage, slope, and curvatures. There are various ways to quantify
a narrow band spectrum in the low-frequency redifin .| at these features in a segment-base system, by either fittingthe
linear intervals in the logarithmic frequency dimension. We deeontour with a certain type of function, or projecting it onto some
fine this representation asdiscrete logarithmic Fourier trans- basis functions. We have chosen the first four coefficients of the
form (DLFT). Given a Hamming windowed speech sigméh)  discrete Legendre transformation as our tone features, following
(n=0,1,..., N,—1), the DLFT is computed as the example of Chen & Wang [1], who describe the decomposi-

tion procedure in detail. They used the transformation for Man-

N,—1 . . .
1 . ) darin pitch coding.
Xi=— Y a(n)e " (i=0,1,...,N-1),
. 2 z(n)e (i=0 )

In a speaker-independent system, it is necessary to normalize the
absoluteF} with respect to the average over the entire utterance,

where to reduce across-speaker differences. We determined empirically
w; = 2mellnfotiding) Lo (i = 0,1, N — 1), whether to adjust by a ratio or a sum. Our data indicate that
the ratio gives smaller variances for the pitch-related features we
dinf = (Infe —Infs)/(N—1), have chosen; thus the Legendre coefficientseatedaccording

N is the size of the DLFT, and}, is the sampling period of !0 the averagéy of the utterance.

thedV\é)aC/E:_o;m. FlguIr{e 1 S?OWS the wzvefor_m, dFourler tr:ar_‘Sforerlormalized duration, as introduced in the previous section, is
an or a200 z pulse train and a voiced speech signal.y g, jncluded as a basic segment feature. The duration feature

The DLFT of the speech signal, sampled betwé&hand1500 does not contribute significantly to tone discrimination, but it is

H 2, has been normalized hylaw conversion to flatten out the o ssevia) to limit insertion and deletion errors in recognition.
formant peaks. TheveightedDLFT of the pulse train, which

is used as @aemplatefor I, extraction as described later, wasA principle component analysis is applied to our five-
normalized such that each lobe has roughly equal area. dimensional tone feature vector, and mixtures of diagonal Gaus-

sians are used to model the distributions.
Because the spectral change due to vocal tract resonances should

be relatively small between adjacent frames, we expect sim 3. Context

lar DLFT spectra except for an offset dependentiog(F)).

A cross-correlation computation providegabust estimate of Each of the four Mandarin lexical tones has a bagicpat-

the relative shiftAlog(Fy). We similarly compute a cross- tern [7]. However, the actual pitch contour for a tone can vary
correlation between each frame and the template, to olff@in dramatically in different tonal contexts. In order to characterize
estimates. Both parameters are considered jointly in determinentextual effects systematically, we performed a clustering ex-
ing the F}, value, taking into account continuity constraints. periment on “tri-tone” models. Besides the four tones, we also

) ) . . included a “blank” context to represent sentence start, sentence
Our current pitch extraction algorithm works as follows. Withing,q anq long inter-word pauses, resulting in 100 “tri-tone” mod-

a voiced region, provided either by a phonetic transcription or by g Gx4x5).
a voiced/unvoiced decision algorithm, we first try to find fiig
value for an anchor point, usually the first frame. All the framedhe cluster tree shows that the models divide naturally into four
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Figure 2: Waveform,ulawed DLFT spectrogram, extractekl, contour, and phonetic transcription for the Mandarin digit string
“ling2 liu4 qil jiu3 wu3 qil er4 qil er4”(067957272).

[ No.ofClasses| 4 [ 21 [ 51 [ 100 | mance gains by applying them to post-processNthbest out-

| Error Rate (%) | 20.0 | 20.2 | 20.0 | 20.7 | puts of a baseline system. This demonstrates the potential of us-
ing prosodic features for improved speech recognition. We also
Table 3: Classification error rate for tone models with differentdeveloped a new robust pitch extraction algorithm, particularly

number of “tri-tone” classes. suitable for telephone quality speech. In this study, we have as-
_ i sumed the prosody to be stable throughout the utterance. In fact,
| System Configuration | WER(%) | SER(%) | even digit strings could have various prosodic structures, such
Baseline 5.1 34.1 as pauses in phone numbers and long digit strings. It will be
+ Duration Model 35 24.8 interesting to incorporate these factors into prosodic modeling.
+ “Tri-tone” Model (21 classes 3.9 25.9 Eventually, we plan to extend this work to more linguistically
+ Both Models 3.1 21.1 rich domains such as Manda@aLAXY , where the influence of

sentence level prosody may play an important role.
Table 4: Summary of recognition results for different systems.
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