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ABSTRACT

This paper presents a syllable-based Chinese spoken dialogue
system for telephone directory services primarily trained with a
corpus.  It integrates automatic phrase extraction, robust phrase
spotting, statistics-based semantic parsing by phrase-concept
joint language model as well as concept-based dialogue model,
and intention identification by probabilistic finite state network
to form a speech intention estimator.  By applying the proposed
techniques, the concept sequence with the maximum a-posteriori
(MAP) probability based on intra and inter sentence
consideration conveyed in the user’s speech sentence, i.e. the
speaker’s intention, can be identified.  This approach is
convenient to be trained by a given corpus and flexible to be
ported to different dialogue tasks.  Incorporate a mixed-
initiative goal-oriented dialogue manager, we have successfully
developed a dialogue system for telephone directory service.
Very promising results have been obtained in on-line tests.

1. INTRODUCTION

Quite many successful spoken dialogue systems have been
developed all over the world in recent years, and many promising
applications have been identified, although not too much results
have been reported on Chinese dialogue systems [1].  Chinese
language is monosyllabic structure, i.e. almost every character in
Chinese is a morpheme with its own meaning, and is pronounced
as a monosyllable.  As a result, the wording structure in
Chinese is quite flexible.  For example, many words can be
arbitrarily abbreviated, while the system needs to be able to
handle them.  The syllable-based approach, in which the basic
unit for recognition is the syllable rather than the word, is found
very helpful, because the syllables correspond to exactly the
characters with meaning.

There are more complicated phenomena in spontaneous speech
such as the lower level events like pauses, filled pauses (e.g.
"uh"), hesitation, laughter as well as other non-speech noises
(inhalation, cough); and the higher level events like false starts,
restarts, etc. In addition, recognition errors, out-of-vocabulary
(unknown words) and out-of-grammar occur more in
spontaneous speech than read speech.  In order to deal with
above problems for the natural language analysis in spoken
dialogue system, almost all viable systems have abandoned the
notion of achieving a complete syntactic analysis of every input
sentence, favoring a more robust strategy that can still answer
when a full parse is not achieved [2-4].  This can be
accomplished by identifying parsable phrases and clauses, and

providing a separate mechanism for grouping them together to
form a complete meaning analysis.  According to this concept,
we present a different way called speech intention estimator to
accomplish.  First, we try to automatically extract domain
specific phrase lexicon from corpus.  During understanding
phase, robust phrase spotting is applied on the syllable lattice
(result of recognition phase) and then the phrase-level parsing is
performed on the phrase lattice to get the complete meaning.
Since a sentence is not composed of many phrases, the parsing
process can be well handled by phrase-level n-gram language
models, which integrate phrase, semantic concept and dialogue
model to modeling intra and inter sentence structure.  Finally,
intention identification is used to classify the complete meaning
to a higher-level intention abstraction via probabilistic finite state
network for further processed by dialogue manager.  The
proposed system block diagram and the detail speech intention
estimator are shown in Figure 1 and 2.
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Figure 1: Block diagram of presented spoken dialogues.
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Figure 2: Speech intention estimator.

2. AUTOMATIC PHRASE EXTRACTION

The utterance persons interacting with each other in a specific
task always includes several recurrent phrases, or called
collocations. These phrases have their specific meanings, which
can further lead to partial or full understanding.  As a
consequence, we think phrases are “significant and frequent co-



occurred patterns relevant to domain-dependent subject.” This
means they have high association among components and are not
all the same for different domain subject. So we try to
automatically extract phrase lexicon for a certain task from
dialogue corpus, which represents the combination of frequently
uttered vocabulary in the conversation.

A phrase is defined as a string composed of from one to several
words representing syntactic and semantic information.  Due to
special structure of Chinese language, each Chinese character is
pronounced as a monosyllable, and a Chinese word is composed
of from one to several characters. Since phrase is a combination
of words, a Chinese phrase is also composed of from one to
several characters. So we adopt the bottom-up strategy to extract
the syllable/character patterns iteratively from characters to
words and further to partial phrases until no other components
have high association with them. We have presented an efficient
approach to measure association [5].  The result shows it really
can extract significant and recurrent phrase, but some false
accepted patterns are inevitable.  In order to reduce false
acceptance, the association measure is modified as formula (1)
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The I(x,y) is the association norm, z
x
(y) and z

y
(x) are the bigram

zscore of f(x,y) among f(x,*) and f(*,y) respectively, σ(f(x,*)) and

σ(f(*,y)) are standard derivations.  )x(z ’

successor  and

)y(z’

rpredecesso  are the shifted and rescaled zscore of the number

of successors and predecessors. They are defined as formula (2).
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Observing formula (1), if a pattern is not fit for the former 4
conditions, which means its association norm is not high enough
and bigram zscore is not greater than 1.  The low bigram zscore
results from f(x,y) being relative low or too near with other f(x,*)
or f(*,y).  To judge whether the pattern is in latter case, we
divide f(x,y) by bigram mean value.  If the result is greater than
or equal to 0.9, we then extract the pattern with high frequency
and specific usage of successor or predecessor.  Because the
range of zscore is from negative, zero to positive, its value is
shifted to positive and rescaled to appropriate range.

When the extraction convergence, we get some final patterns, i.e.
phrases, and some intermediate patterns, which may be
meaningful partial phrases or incomplete patterns just used to
extend to complete patterns.  For example, “��(company)”�

“���� (limited company)” is meaningful partial phrases,
while “���(King east road)” is meaningless, just used to
extend to “	��� (Nan King east road)”. So the incomplete
patterns must be discarded.  We measure the function zsuccessor

(*)
and z

predecessor
(*) for each pattern to judge the intermediate pattern

is complete or not.  If one of them is less than
, which means
the successor or predecessor of this partial pattern is very specific,
then this pattern is impossible to be a phrase boundary and should
be viewed as incomplete to be discarded.

3. ROBUST PHRASE SPOTTING

There are many state-of-the-art word spotting techniques, but we
present a quite different technique. The presented phrase spotting
approach is performed on the syllable lattice, which is
recognized based on the acoustic front-end of Mandarin
continuous speech recognition. In order to solve the problems of
insertion/deletion/substitution from syllable recognition errors
and extra modifiers or abbreviations by user, we design a robust
identification technique on syllable level for spotting phrases.
For each phrase, we generates a "time span graph" recording the
beginning and ending time frames each syllable occurred on
syllable lattice, then identify phrase boundary by searching the
shortest path on graph with a Viterbi algorithm [6].

Though the test results prove that the previous work is efficient,
observing the spotted phrases, the spotting rate is high but the
false alarm rate is not very low.  These false spotted phrases
will increase the possibility of understanding errors.  Here, we
propose some improvements.  First, every component syllable
in "time span graph" for each phrase generated from syllable
lattice is added one dummy node, representing a substitution.
This gives the chance that choosing dummy node instead of other
time frame node on the optimal path. In other words, sometimes
a phrase is more likely having one substitution than some
insertions. Second, the cost function for shortest path search is
promoted to n-gram distance.
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When the distance between two syllables is calculated, if one or
two of them are dummy nodes, which means there exists deletion
or substitution on the searching path and we give them lost
values to represent distance.  For the value of
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ss , .  Third, we further define the score of

phrases by integration of the costs and acoustic scores as shown
in formula (4).
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Figure 3: The cost for a syllable path in time span graph
matching a phrase.
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Symbol L is the length of phrase (number of syllables).
Because the cost is a minimum estimation, its inverse represents
the similarity between the spotted segment and the phrase, and it
is added one before inverse to avoid dividing by zero.  Thus the
range of similarity is between 0 and 1 and consistent to the range
of probability. Besides, the acoustic scores are processed by
simple verification, Sigmoid function [7]. Those syllable
hypotheses with verification score lower than a threshold are
rejected. The Sigmoid function not only verifies the syllable
hypotheses but also appropriately reduces score range to (0,1) to
be consistent to the range of probability.

Connecting the phrase hypotheses spotted by robust phrase
technique, we can get a phrase lattice.  Since the phrase lexicon
is the significant and meaningful parts extracted from corpus,
there still have insignificant parts in sentence.  We view them
as fillers.  The final phrase lattice with fillers is as the example
in figure 4.
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Figure 4: Phrase lattice example.

4. STATISTICS-BASED SEMANTIC
PARSING AND INTENTION

IDENTIFICATION

During understanding phase, robust phrase spotting is applied on
the syllable lattice (result of recognition phase) and then the
phrase-level parsing is performed on the phrase lattice to get the
complete meaning.  Since a sentence is not composed of many
phrases, the parsing process can be well handled by phrase-level
n-gram language models, which integrate phrase, semantic
concept and dialogue model to model intra and inter sentence
structure.  Finally, intention identification is used to classify the
complete meaning to a higher-level intention abstraction via

probabilistic finite state network for further processed by
dialogue manager.

4.1. Phrase Classification

Every phrase has its meaning in semantics. For example, “Please
help me find”, “I want to inquire”, or “May I ask” all represent
inquiries; “What”, “Pardon”, or “Would you please repeat again”
all represent unclarity. We can understand speaker’s intention
from the combination of the meanings of all the spotted phrases
in an utterance. For a specific task, we can define some semantic
tags and label a tag for each phrase. But when the task is very
complicated, these works become very laborious and tedious. On
the other hand, it can not be ported to other tasks directly.  Here
we want to automatically classify the phrases to some concepts;
that is, the phrases with similar meaning in semantics are
grouped into the same concept.

First, create a feature vector for every phrase. For a phrase, p, its
feature vector, V(p) = [f(p1, p), f(p2, p), …., f(p

n
, p), f(p, p1), f(p,

p2), …., f(p, p
n
)], n is the phrase lexicon size, the first n

dimension is the frequency of all phrases preceding it, and the
last n dimension is the frequency of all phrases succeeding it.
Second, use vector quantization (VQ) to cluster the n vectors.
That is, those phrases with similar predecessors and successors
probably have the same semantic meaning. Here we present a
modified algorithm which is not to preset the number of clusters,
and not necessary to be exponential of 2. The modified algorithm
begins with one cluster and splits one more cluster every
iteration until the average distance falls below a threshold.
After the modified VQ processed, the phrases with similar
meanings are clustered together. We call the clusters as concepts.
To realize their meanings, we give each concept a tag name.

4.2. Phrase-Concept Joint Language Model

Because of the speech recognition ambiguities and errors as well
as the inherence of robust spotting approach, the false alarms
resulted by phrase spotting are unavoidable. These false phrases
may lead to misunderstanding. Therefore, it is important to
reduce the false alarms for correct understanding. It is well
known that conventional word n-gram language model used in
the linguistic processing of speech recognition achieves good
performance. We follow the point to present a phrase-concept
joint bigram language model, which is able to perform syntactic
and semantic checking for modeling the intra sentence structure
and rejecting the false phrases.

For acoustic observation, O, we search for the top N phrase path
P = (p1, p2, ……, p

k
) on phrase lattice with corresponding

concept path C = (c1, c2, ……, c
k
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Since the language model is not related to fillers,
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combination of PhraseScore described in section 3 and the score
of fillers. Its log value is defined in formula (6).
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),Pr( CP  is the phrase-concept joint language model

formulated below.
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4.3. Concept-Based Dialogue Model

In order to more precisely model the inter-sentence relation in
dialogue model, a concept-based dialogue model is developed.
The unit of dialogue model is based on the semantic unit,
concept, instead of whole sentence as usual. We want to model
the semantic relation of inter-sentence instead of the relation of
intention abstraction. So every concept in searching phrase
lattice is conditioned to the concept sequence of previous two
utterances (one is speaker utterance, the other is system response)
as shown in formula (8).  Integrating the concept-based
dialogue model to rescore the top N phrase/concept paths defined
in formula (7) and then decides the final top1 path, of which the
intention of utterance is composed.
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In above formula, c
i
, is the corresponding concept of i-th phrase

on the current searching path, 1−
j

c  is the j-th concept on the

concept sequence of the last system response, and 2−
k

c  is the k-th

concept on the concept sequence of the second preceding
utterance, i.e. last speaker’s utterance.  J and K are the number
of phrases in previous two utterances.

4.4. Intention Identification

By the language and dialogue models estimation, we get the
maximum likelihood concept path.  Now we try to identify the
intentions conveyed in the concept sequence by finite state
networks (FSNs). The concept sequences with the same intention
abstraction in corpus are trained to form a FSN. Each FSN
represents a kind of speech act type (SAT).  The intention
annotation for training corpus allows more than one SAT in a
dialogue turn. The FSNs are applied to do higher level pragmatic
grammar checking.  Because the FSNs are probabilistic, there
always have a maximum likely intention even out of grammar.
Besides, if more than one FSN accepted in checking, which
means the speaker expresses more than one speech act.  So the
final multi-intention speech is composed of some SATs, which
will be further processed by the dialogue manager and associated
with database management.

5. EXPERIMENTS

A recently completed successfully working Chinese spoken
dialogue system for telephone directory services is developed.
The task is for all banking/financing organizations in Taipei,
with a total of 4208 phone numbers.  This system is primarily
trained with a corpus recorded from real conversations between
human beings, therefore is user/system mixed-initiative
simulating the two-way dialogue to a good extent about 21 kind
of intentions, including greetings, inquiring telephone numbers,

requesting divisions/ departments or other lines, asking for idle
telephone numbers, repeating numbers or asking for repeating
utterances, etc.  The system accepts either a syllable recognizer
or a Chinese keyword spotter as the acoustic front-end.  Most of
the models are trained from the corpus with bootstrapping
strategy, thus are flexible with good portability to different tasks
when the corpus is available.  In initial experiments the training
corpus includes transcriptions of 1156 human dialogues with a
total of 12,776 sentences and 88,119 characters.  They were
obtained from Chung-Hua Telecom in Taiwan recorded from
real human-to-human directory services.  In the tests, 77.99% of
top15 candidate inclusion rate for syllable recognition front-end
gives 79.39% of phrase spotting rate and 80.42% of user
intention estimation accuracy.  Ignored the out of task
utterances, the accuracy can achieve 87.89%.  Further
improvements for the system are currently under progress.

6. Conclusions

We successfully developed a telephone directory service spoken
language dialogue system for Mandarin Chinese.  It is a
user/system mixed-initiative dialogue system to simulate the
conversation may occur in client-agent telephone directory
services to a good extent.  The proposed statistics-based
approach is capable of modeling speaker’s intention and
integrating human knowledge. The test results prove that the
proposed approach is efficient and can be easily applied to
various spoken dialogue applications.
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