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ABSTRACT

In this paper, we describe our work on the field of confidence
measures for HMM-based speech recognition. Confidence mea-
sures are a means of estimating the recognition reliability for
single words of the recognizer output. The possible applications
of such measures are manifold. We present our experiments with
well known approachesand propose somenew ones. Particularly,
we propose to combine the mere acoustical measures with lan-
guage model-based ones for continuous speech recognition that
involves a stochastic language model. This slightly improvesthe
acoustical measures and preservestheir advantage of being com-
putationally very cheap. Experiments are carried out on a Ger-
man isolated word recognition system and on continuous speech
recognition systems for the Resource Management database and
the Wall Street Journal WSJO0 task.

1. INTRODUCTION

Word-based confidencemeasuresfor speechrecognition based on
hidden Markov models (HMMs) have for some years now been
an important research topic. While in the beginning the main in-
terest was to detect out-of-vocabulary (OOV) words and recog-
nition errorsin isolated word recognition and to usethem asdia-
gnostictool [2], several new applications of these measures arose
in the more recent years. Such as adjusting the degree of unsuper-
vised online adaptation or guiding the decoding search by scaling
the language model with the previouswords' confidencefor are-
duced word error rate [5].

For a word w within the boundaries ¢ and b (utterance of w is
hypothesized to have caused the acoustic observation X.5 :=
(%a,...,zs)), aword-based confidencemeasure can be defined as
function ¢(w, a, b) with ausual domain of [0, 1]. The higher this
function is for a hypothesized word and its hypothesized bound-
aries, the more confident one can be that it really has been uttered
within the interval.

Often, the confidence measure of a word w, hypothesized for
an acoustic observation sequence X = (z1, 22, ..., %), is dir-
ectly interpreted as the word’s posterior probability P(w|X).
However, especially in continuous speech recognition, the con-
fidence of a word whose position has been hypothesized as the
interval [a, b], is often understood as an estimate of the probabil-
ity that the word starts somewhere around a and ends somewhere
aroundb. Inthiscase, theinterpretation asmere posterior probab-
ility P(w|Xas) isinadequate. Nevertheless, confidence measure
and posterior word probability are strongly related.

This paper first presents the basic approaches for measuring the
word-based recognition reliability and then outlines some of the

special techniquesthat we use, discusseshow to measurethe qual-
ity of confidence measures and concludes with several experi-
ments for isolated word and continuous speech recognition.

2. CONFIDENCE MEASURESBASED ON
THE ACOUSTIC MODELS

Conventional HMM-based speechrecognizerschoosetheword or
word-sequences W with the highest posterior probability estim-
ate P(W|X) for an observed acoustic observation X . P(W|X)
is split up into %ﬂ where P(X|W) is modeled by se-
quences of HMMs, P(W) by stochastical language models or
finite grammars and P(.X) is a scaling factor that can be omit-
ted because it does not depend on W. In order to transform the
HMM-based likelihoods into posterior probabilities that can be
interpreted as confidence measures, Bayes' rule can be applied.
For aword w hypothesized for the interval [ab] this yields:

P(Xap|w)P(w)
P(Xap)

Neglecting theword priors P(w) (in casethat we haveamodel for
them, wewill discusshow to incorporate this later) the confidence
measure becomesthe observation likelihood for the hypothesized
word (the score estimated by the recognizer) weighted by an un-
conditioned observation likelihood.

c(w,a,b) = P(w|Xap) = (1)

2.1. Estimation of theunconditioned observation
likelihood

The unconditioned likelihood P(X .) can be modeledin several
ways. In ordinary continuous or tied continuous systemsthere is
no dedicated model for this likelihood. However, with estimates
P(s) for the HMM states’ priors, the unconditioned probabilistic
distribution function p(z) can be estimated as the weighted sum
overall the S states’ probabilistic distribution functionsaccording
to

p@) =Y plalsi)P(si) @

The state priors P(s) can be easily estimated on the training data
or on the vocabulary. In [7], we showed how Eq. 2 simplifies
for several kinds of systems and how to approximate it in others.
Especially in discrete and tied continuous systems the additional
computation of p(x) turns out to be computationally very cheap.
Theunconditional likelihood of a sequenceof observationvectors
can then be estimated as

P(Xa) = (Hp(m))té%‘” ©



with ¢ay representing an averagetransition probability.

2.2. Phoneme-based measures

For the detection of OOV words, Asadi et al. [1] proposed to
weight the hypothesized word’s likelihood against the one of an
unconstrained model sequence. The ideais that for OOV words
there must be a better fitting sequence of phones p* than the one
found, that simply is not part of the dictionary. Hence, they used
the quotient

P(Xap|w)
P(Xarlp") @
to decide, whether the hypothesized word w is correct or not.
Young [10] extended this approach by applying additional prior
probabilities for phone sequences estimated using a (tri)phone-
trigram.

The likelihood p( X s|p*) of an arbitrary phone sequence can be
estimated with ordinary speech recognizersusing a so-called 2+-
Model [1], a network that allows any sequence of at least two
HMMs without any constraints on the sequencepriors.
Observationsshowed that often it is only one or at most two phone
modelswithin an incorrectly hypothesized word, that producean
extremely bad likelihood score. They get squeezed inbetween
phones, where they simply don’t occur, in order to let at least the
other modelsfit well. In order to cope with this observation, sev-
eral approaches have been followed. In [9], each phone’s confid-
ence is estimated separately and the words' confidence is com-
puted asthe averageover all the phones. Thisresultsin anormal-
ization over the phone duration. It puts more emphasis on short
phonesthan the previously presented measures. Another possibil-
ity to compensatefor the described observationisto set thewords'
confidenceto the minimum confidenceamong its phones.

c(w,a,b) =

e(w,a,b) := min cp, p, (p) ®
pEW

In the equation above, p, and p, represent the phone boundaries

of phonep hypothesized by the speech recognizer. Some experi-

ments using this technique are presented in Section 5.

3. CONFIDENCE MEASURESFOR
CONTINUOUS SPEECH RECOGNITION

In continuous speech recognition measuring word-based confid-
ence mainly faces two additional problems compared to isol-
ated word recognition. On the one hand, the hypothesized word
boundaries are often incorrect. Ideal substitutions with correct
word boundaries (but an incorrect word hypothesis) are rather
rare. On the other hand, recognition is based not only on the
Markov models' probabilistic distribution functions, but also on
alanguage model that limits the possible word sequences (word-
pair grammars, finite grammars) or estimates each word se-
quence'sprior probability (stochastic language models, n-grams).

3.1. Measuresbased on theresponse of therecog-
nizer
A very straightforward approachfor measuring confidencein con-
tinuous speech recognition is to consider the speech recognizer
as a black box, that we cannot or want not look inside, but to
let it generate multiple hypothesis and to take the words' ’emis-
sion’ probabilities as their confidencemeasure. The multiple hy-
pothesis can be set up in various ways. In [3], Finke et a. pro-
posedto perform multiple recognition proceduresapplying differ-

ent scaling factors for weighing the language model based like-
lihoods against those based on the acoustic models. In [4], this
was compared to the somewhat cheaper alternative of simply tak-
ing the N-best or lattice-output of only onerecognition procedure.
No severe differences to the scaling factor approach have been
measured. The multiple recognizer outputs are usually stored in
word-lattices[4] or N-best lists. Thisapproach providesvery use-
ful confidence estimates. (Often, these estimates are even con-
sidered asreference for other approaches.) However, this method
that is only based on the output of the speech recognizer is ex-
tremely expensivewith respect to computational time needed for
decoding. Thus, for real-time applications, such as dictation or
dialogue-systems, methods which do not require additional de-
coding computations are desirable.

3.2. Mode-based measures

Confidence measures that only need little additional computa-
tion consider the statistical models themselves. In the following,
measures that use the acoustic hidden Markov models, the lan-
guage model and those that aim to combine them are discussed
separately.

3.2.1. Measuresbased on the acoustic models

Confidencemeasuresfor continuousspeech recognition merely
based on the acoustic hidden Markov models have been investig-
ated in [9] for hybrid speech recognizers. It turned out that there
is a noticeable degradation of these measures compared to the
lattice-based ones described in the previous section. We exper-
ienced the same when applying the acoustical confidence meas-
ures described in Section 2 for hypothesized words of a continu-
ous speech recognizer. Experiments can be found in Section 5.
These measures neglect the language model and can hardly cope
with the fact that often the acoustic matchis fine but the hy pothes-
ized word boundaries are wrong. Therefore, in the following we
describeour approachto improvethe acoustic model-based meas-
ures by the incorporation of language model information.

3.2.2. Measuresbased on the language model

As amere language model based confidence measure we pro-
poseto use an n-gram score weighted by the previouswords’ con-
fidence. In the bigram case, thisis formulated by

Cim(w2) = Cim(w1)pei(wa|wr) + (1 — Clm(wl))Pum(w2()6)
for the hypothesized word w- succeeding the hypothesized word
w1 . Another possible measure that we made use of is the product
of the specific word’s likelihood and its reverse likelihood (the
languagemodel likelihood of the succeedingword). Inthebigram
case, thisyields

Cim(wz2) = p(wa2|wi)p(ws|w2) ™

for the hypothesized word w- between the words w; and ws.

The results of experimentswith these measures (Egs. 6 and 7)
without any acoustical information are givenin Section 5. They
show that the measurescontain little but at least someinformation
onwhether ahypothesizedword is correct or not and motivatethe
combination with an acoustical measure, described in the follow-
ing paragraph.

3.2.3. A combination of acoustic and language model-based
measures

Combining multiple featuresto result in only one metric can be

accomplishedin many ways. Neural Networksare acommon tool



for deriving such afunction from training data. In [4, 6], severa
features were combined this way for measuring the word-based
confidence. Aswe only want to combinetwo measures, an acous-
tic and a language model-based one, the product of these two is
sufficient. Unfortunately though, just as in continuous speech re-
cognition when combining language model and acoustic model
likelihoods, a scaling factor s has to be introduced to cope with
the different scale and quality of these measures. Thus, the com-
bined confidence measure becomes

C(w) = Cac(w)Cim(w)” ®)

with Cac(w) representing one of the acoustical measures defined
in Section 2.

As the measure based on the language model that was definedin
Eq. 6 uses the previous words' confidence, the language model
based measure Cjy, can be refined by referring to the combined
measure recursively so that in the bigram case Eq. 6 becomes

Cim(w2) = C(wi)pei(wz|wi) + (1 = C(wi))puni(w2). (9)

We measured some improvement using this combined measure
over the acoustic ones, but there still is a remarkable gap to the
measures derived from the recognizers lattice response (see Sec-
tion 5). However, it hasto be considered that the proposed meas-
ure can be computed very efficiently and thus allows real-time ap-
plications.

4. ASSESSMENT OF CONFIDENCE
MEASURES

The quality of confidence measures largely depends on the task
that they are set up for. A metric proposed by NIST istherelative
entropy asdescribedfor examplein[4]. It measuresthe amount of
information that the confidence measure contains on the correct-
nessof the hypothesizedwords. Thedisadvantageof thismeasure
is the need for a transformation of the confidence measure to the
interval [0, 1] and to an average of the recognizer’s correctnessin
order to be interpreted as posterior word probabilities. This af-
fords the knowledge and incorporation of this correctness figure
and allows an additional degree of freedom in scaling that directly
effects the metric.

Therefore, we concentrated our experimental work and evaluation
on the classic confidencemeasure application of detecting recog-
nition errors. A meaningful diagram plotsthe amount of correctly
hypothesized wordsthat arefalsely rejected (false alarms) against
the amount of undetected errors depending on a specific rejec-
tion threshold. An interesting figure is the minimum percentage
of falsely rated wordswith anideal rejection threshold. In[6], this
metricis called the classification error (CER). In the following ex-
periments section we mainly use these types of evaluation. It has
to be noticed, that the absolute value of the CER largely depends
on the evaluated system'’s recognition performance. Hence, the
CER may not be compared over different recognition systems.

5. EXPERIMENTSAND RESULTS

A first set of experiments was run on a 1000 word German isol-
ated word recognition system. The acoustic modelsof this system
have been trained on the Verbmobil spontaneousspeech database.
Figure 1 displays the ratio of false alarms and undetected errors
for different detectionthresholdsfor the various confidencemeas-
ures presented in Section 2. It is obvious that the phone-based
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Figure 1. Confidencemeasuresfor isolated word recognition
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Figure 2. Continuous speech (RM) without grammar

measures (Egs. 4 and 5) outperform the mere normalized likeli-
hood (Eq. 1 with Egs. 2 and 3). The strong degradation of the
normalizedlikelihood measureisprobably mainly duetothelarge
amount of OOV words in the test set the results are based upon.
Half of the words in the test set are OOV which causes an error
rate of about 55%. The CER of the two phone-based measuresis
around 24%. Confidence measures applied on continuous speech
recognition can be seen in Figures 2, 3 and 4. They were set up
on tied continuous (tied according to [8]) context-dependent (tri-
phone) recognition systemsfor the ResourceM anagement task (2,
3) andthe Wall Street Journal WSJOtask (4). In Figure2, recogni-
tion was performed without any constraintson the sentencepriors.
The recognition correctness of this systemis at about 65%. It is
interesting to see that the measurebased on Eq. 4 performsjust as
bad as a random confidence measure would. It seemsthat hardly
no phones are misclassified, but that it is mainly the segmenta-
tion into wordsthat is often wrong. Furthermore, it isremarkable
that in this case of having an unconstrained recognition grammar
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Figure 3. Continuous speech (RM) with word-pair grammar
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Figure4. Confidence measureson the WSJO database

the normalized likelihood measure nearly achievesthe same per-
formance as the measure that is based on the multiple recognizer
outputs. The CER of thesetwo measuresis at about 27%.

Figure 3 displaysthe sasmemeasuresfor arecognition system that
is enhanced by the standard RM word-pair grammar. The system
achieves a correctness of 93% (the test set from September ' 92
was used). It can be noticed that the quality of the diverse meas-
ures strongly differs from the no-grammar case. As expected, the
N-best list based measure now outperforms the other measuresby
far (CER ~ 6%). Itisthe only measurethat (indirectly) takesboth
statistical models (acoustic HMMs and language model) into ac-
count. According to the observation in the no-grammar case the
best acoustic confidence measure is the mere normalized likeli-
hood. Phoneme-based measures only seem to be of good usein
isolated word recognition.

The combination of language model and acoustic model-based
measures, as proposed in Section 4, was evaluated on the WSJ0
database. Figure 4 shows the chart. Is is obvious that the lan-

guagemodel-based measuresare weak but hold someinformation
at least. The Forward-Backward measure of Eq. 7 outperforms
the weighted likelihood of Eq. 6. When combined with an acous-
tical measure, it remarkably improves this measure (CER = 9%).
However, the measure based on multiple recognizer outputs (CER
=~ 8%) cannot be outperformed.

6. CONCLUSION

The experiments have shown that confidencemeasuresthat only
rely on a portion of the statistical models will always degrade
against others that involve al of them. While for isolated word
recognition phone-based measures give best results, in continu-
ous speech recognition we measured the best performance with
asimply weighted likelihood measure enhanced by the language
model confidence measure. However, this still degrades strongly
against the lattice-based measure. Nevertheless, it islots cheaper
to compute and thus useful even for real-time applications.
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