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Abstract

A new method to combine language models is derived.
This method of log-linear interpolation (LLI) is used
for adaptation and for combining models of different
context length. In both cases LLI is better than linear
interpolation.

1 Introduction

Combining models of different nature is an important
task in language modeling. Up to now, linear interpo-
lation [1] has been the preferred method. It was used
to combine models trained on different corpora or to
add a cache-component to a M-gram model. Adaptive
linear interpolation [2] is used for the same task but
adjusts the interpolation weights during recognition.

A far more powerful method of combination are
maximum-entropy models [3, 4]. There, individual
features which should be included into the model are
selected and used as constraints. During training, a
model 1s constructed from the constraints and the final
model satisfies all constraints simultaneously. How-
ever, this method suffers from very long training times
and hence is not widely spread in application. In ad-
dition, the constraints have to be consistent [8], which
means that an arbitrary selection of features may cause
training to fail.

Thus, we suggest a new method called log-linear
interpolation (LLI) which is related to maximum en-
tropy models but has all the flexibility and the same
number of free parameters as linear interpolation. This
paper aims at a strict comparison of linear and log-
linear interpolation under identical conditions the only
difference being the method of combination. As an
aside we also want to shed a light on various other
issues discussed above.

2 Log-Linear Interpolation

This first section will show the formal equivalence of
a constrained minimum Kulback-Leibler distance ap-
proach and a linear interpolation of scores. A set of N
models p; 1s given. Those models may be of any type
(i.e. zerogram, unigram, ...) and also trained on dif-
ferent corpora. The unknown model will be denoted
by p. It is now assumed that the Kullback—Leibler

distance of the unknown model to the given models p;

is
Dpllp))=di , i=1...N . (1)
An additional model pg is given and the distance
to this model should be kept small. At the same time
the constraints (1) should be satisfied. Using Lagrange
multipliers X; yields

D = D(p||po) +ZA’ (pllpi) — i) (2)

which has to be minimized with respect to p [6]. A
closed solution of the model is easily obtained. To
simplify the results, the Lagrange multipliers are re-
defined and now denoted by A. In addition, the model
is finally expressed in terms of conditional probabili-
ties. To complete this derivation, pg is assumed to be
a uniform distribution which allows py to be absorbed
into the normalization 7, (k) of the model. Hence,

pelh) = s [Tt @)

is obtained. Because of the special selection of py and
the redefiniton of A; no explicit constraint on the in-
terpolation weights A; appears. The final model (3)
can be interpreted as a linear interpolation of scores.
However, an additional score from the normalization
Zx(h) has to be added.

This model will be compared to the well established
linear interpolation [1]

p(wlh) =

sz w|h (4)

with >, «; = 1. To ensure that p(w|h) are probabili-
ties, the ay; also have to be positive.

3 Training

Corresponding to the two different formal settings,
there are two different schemes to calculate the free
parameters d; or A;. We decided to optimize the log-
likelihood

FNY) = Zf hw)log (Z—(h)Hpi(le))")

(5)



and to optimize with respect to the A;. Here f(hw)
are the frequencies of the M-gram hw in the cross-
validation set.

First, it is important to observe that F({A;}) is con-
vex in all ;. To prove this, one may use the statements
that the sum of convex functions is again a convex
function and that applying a convex and monotoni-
cally increasing function to a convex function yields
again a convex function.

As F({Ai}) is convex there is a unique maximum
and any algorithm for multidimensional optimization
can be used. Of course, it is possible to employ the
generalized iterative scaling algorithm [8] used to train
maximum entropy models to devise an optimization
scheme for LLI. However, in this work, the simplex
algorithm as described in [7] was used, as this is a
robust general purpose method.

The parameters for the linear interpolation model
are trained by the EM-algorithm. It is important to
note, that both interpolation schemes have the same
number of free parameters to be optimized, use the
same ingredients and are language modeling tools to
combine any set of models p;.

4 Adaptation

This 1s the first section which describes a special
application. The task is to build the best model
suitable for a specific domain. To this end models
trained on the background-corpus and models trained
on the adaptation-corpus (which is typically from the
target domain) are given. The background models
are marked by the subscript “back” and the models
from the target domain by the subscript “adap”. We
consider the combination of unigram-, bigram- and
trigram-models. This yields

p(w|uv) = Tv) pback(w|uv)>\A3 (6)

padap(w|v)>\A2pbaCk(w|v)>\B2
padap(w)AAlpbaCk(w)ABl

This model has five parameters which are determined
on an additional cross-validation corpus also taken
from the target domain.

The model (6) is related to FMA (fast marginal
adaptation) that was developed in [5]. Tt is given by

1 padap(w) ) g
ack(wluv) . (7
Z(UU) (pback(w) po k( | ) ( )
It was derived by using the first iteration of generalized
iterative scaling (GIS). It is easily observed that FMA
is a special case of (6) with Ap1 = —8, A1 = S,
/\32 = 0, /\AZ = 0, and /\33 =1.

plwluv) =

5 Long Range Models

The second application will focus on combining models
with different range. In [3, 9], bigrams and distance-2

bigrams (d2-bigrams) have been combined using max-
imum entropy methods to form a model for trigrams
predicting word w after wv. Distance-2 bigrams are
models pq2(w|u) that ignore the word v immediately
preceding w. In the framework of LLI this combina-
tion task is solved by

Adz

p(wluv) = P(w)* par (w]v)** paz (w]u)

7 (uv)

g
Here, pqi(w|v) denotes the usual bigram. This model,
may also be interpreted to result from a first iteration
of GIS. The GIS-constraints are

Zp(uvw) = pa1(vw) (9)

and
Zp(uvw) = paz(uw) (10)

v

As the initial model, the unigram is used. Hence,
GIS gives a model with the same structure as (8) and
additonal constraints for the interpolation weights:
Adv=1—v—6, Ayt =~ and Ags =6 withy +4 < 1.

Of course, this scheme can be extended to combine
distance-n bigrams and distance-{m,n} trigrams to
build a long-range M-gram.

6 Experiments

Data

For the adaptation experiments the Spoke 4 adapta-
tion task from the 1994 ARPA evaluation was used
[11]. Two different target domains are given, one with
articles about Jackie Kennedy (denoted by “JK” in
the tables) and one about Korea (denoted by “KO”’).
For each domain, the size of the adaptation data is
about 12000 words. There are an additional 10000
words for cross-validation and 2 000 for perplexity and
recognition tests. The background models are trained
on 240 million words of north American business news
(NAB). The NAB-models where also used for experi-
ments to combine models for different history.

The second set of data from the development set of
the 1997 DARPA evaluation [12]. (transcripts of the
acoustic training data: denoted by “TAT”) consists
of 380000 words for training, 11500 words for cross-
validation and 11500 words for testing For those texts
an artificial vocabulary of 1500 words was constructed
that consists of words, phrases and fragments of words
[10] and which has no unknown word.

6.1

6.2 Adaptation

Now, results for the adaptation task are reported in
Tab. 1 and Tab. 2.

The resulting weights are given in Tab. 1 for FMA
and for LLI, for using only unigram models and for
using uni- and bigram models for adaptation. It is



| Model I a1 | Aa2 | A1 | A2 | ABs |
FMA JK 0.50 |1 0.00 | -0.50 | 0.00 | 1.00
FMA KO 0.42 1 0.00 | -0.42 0.00 | 1.00
LLI Uni. JK 0.47 1 0.00 | -0.44 | 0.00 | 0.91
LLI Uni. KO || 0.43 | 0.00 | -0.39 | 0.00 | 0.90
LLI Bi. JK 0.30 1 0.23 | -0.42 | -0.08 | 0.91
LLI Bi. KO 0.26 1 0.19 | -0.37 | 0.00 | 0.86

Table 1: Parameters for adaptation-task.

interesting that increasing the number of free param-
eters to 3 (LLI Uni), not only effects A4; and Ap; but
also reduces Agz by 10%. When all five parameters are
used, surprisingly Apgs still vanishes and the weight of
Aa1 1s now distributed over A4; and A4s. For each
model, the sum of all parameters is always 0.94 which
hints at a constant importance of the zerogram model
absorbed in the normalization.

| Model || PP ] WER]
Trigram || 198.4 | 23.2 %
FMA 160.1 | 22.6 %
Lin Uni. || 175.2 | 22.3 %
LLI Uni. || 152.7 | 21.6 %
Lin Bi. 1488 | 21.8 %
LLI Bi1. 143.0 | 21.6 %

Table 2: Perplexity and WER for adaptation-task.

In Tab. 2, the perplexity (PP) and word-error-rates
(WER) results are reported for both target domains
(JK and KO) combined. Going from FMA to a log-
linear interpolation of the same component models
(LLI Uni.) gives an improvement in perplexity of 5%.
Including bigrams (LLI Bi.) gives an improvement of
the same order. More important is the comparison of
linear and log-linear interpolation. The improvements
range from 13% to 4%. In all cases log-linear inter-
polation is the better way of combining models. The
same is true for the word-error-rate.

6.3 Long Range Models

6.3.1 Bigrams and Distance-2 Bigrams

A simple and for practical applications important case
is the combination of ordinary bigrams (d1-bigrams)
and distance-2 bigrams to construct a model with an
effective trigram context. Both NAB and TAT are
used for the experiments. Hence, it is possible to com-
pare the parameters of the two tasks. The numbers
are depicted in Tab. 3. The parameters seem to be
independent of the task, despite the fact that the two
tasks differ. This robustness of the parameters is use-
ful as it allows to use those as initial parameters for
a new task. Only very few optimization steps will be

necessary for a new task. Note that the parameters
sum to approximately 1 as indicated by the derivation

from GIS.

| Model || /\U | /\dl | /\d2 | Zz /\z |
LLI NAB || -0.52 | 0.86 | 0.62 0.96
LLI TAT || -0.49 | 0.84 | 0.55 0.90

Table 3: Parameters for eflective-trigram-task.

| Model | PP] WER]
Bigram 317.7 | 25.8 %
Lin. d1 +d2 || 302.1 | 25.8 %
LLI d1 4 d2 250.1 | 25.0 %
Trigram 1984 1232 %

for the effective-

Table 4: Perplexity and WER
trigram-task on NAB.

The perplexity figures for NAB and TAT are given in
Tab. 4 and Tab. 5 respectively. Linear interpolation of
bigrams and d2-bigrams gives improvements between
1% and 5% whereas for log-linear interpolation the
decrease in perplexity ranges between 19% and 21%.
This is clearly the task for which log-linear interpola-
tion outperforms the established linear interpolation.
The WER-results for NAB are also given in Tab. 4.
WER again goes down as perplexity is reduced.

6.3.2 Application to other long range models

| Model | PP]
Bigram 146.3
Trigram (M3) 99.7
Fourgram 97.8
Lin. d1 + d2 145.1
LLI d1 + d2 119.1
Lin. d1 +d2 4 d3 145.1
LLI d1 4 d2 4 d3 115.8
Lin. M3 + d1 + d2 + d3 98.6
LLI M3 + d1 + d2 + d3 93.0

Table 5: Perplexity on TAT.

Of course, LLI is well suited to go beyond trigrams.
In Tab. 5 two effective-fourgram models are investi-
gated. The first one combines d1-, d2- and d3-bigrams.
In this case, linear interpolation gives no additional
improvement as the weight of the d3-bigram vanishes,
because there 1s no component in the model that can
compensate for unigram information also contained in
the d3-bigrams. In contrast, for LLI there is an addi-
tional improvement of 3% because the unwanted parts



of the d3-bigram are compensated by an increase in the
weight of the unigram. Finally, the trigram is added
to the model (M3 + d1 4+ d2 4 d3). This log-linearly
combined model gives perplexities which are by 5%
lower than the ones of the true fourgram.

7 Combination of Phrases and
LLI

Phrases have shown nice improvements of bigram per-
plexity on WSJ. It is hence challenging to test how far
one can get when combining LLI and phrases. The re-
sults on WSJ is summarized in Tab. 6. No training of
the interpolation parameters has been done but they
have been taken from the NAB tests as we also wanted
to test the robustness of the parameters.

| Model | PP]
Words
Bigram 102.1
Trigram 56.2
Words and Phrases
Bigram 72.4
+ d2-Bi (Lin) 70.2
+ d2-Bi (LLI) 57.7

Table 6: Combination with phrases: perplexity on
WS.J.

The original trigram had a perplexity of 56.2 and
the first two steps outlined above (phrases and LLI)
bring perplexity from an original 102.1 down to 57.7.
Thus, we are now 2.5% above the original trigram.

8 Conclusion

We have presented a new general scheme for combining
independently trained language models. Two applica-
tions have been discussed for which log-linear interpo-
lation was always better than linear interpolation. In
particular for combining models of different range the
LLI is suitable.

Maximum-entropy (ME) models may also be used to
combine different knowledge sources. However, given
the component language models; LLI has far less free
parameters (usually less than ten as compared to a few
million for ME) which in addition are robust (i.e. do
not vary much) when changing the task. Hence, train-
ing for LLI is far less an issue. What is still missing
is a comparison for performance of LLI and ME. ME
i1s expected to give better results but it is not clear
whether the difference will be large enough to justify
the effort of ME.
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