
PLUG AND PLAY SOFTWARE FOR DESIGNING
HIGH-LEVEL SPEECH PROCESSING SYSTEMS

T. Dutoit(*,+) , J. Schroeter(+)

(*)TCTS Lab,
Faculté Polytechnique de Mons

 31 Bvd DOLEZ, B-7000 Mons, Belgium

(+)AT&T Labs-Research
 180 Park AV, PO Box 971

Florham Park, NJ 07932-0971

ABSTRACT

Software engineering for research and development in the area
of signal processing is by no means unimportant. For speech
processing, in particular, it should be a priority: given the
intrinsic complexity of text-to-speech or recognition systems,
there is little hope to do state-of-the-art research without solid
and extensible code. This paper describes a simple and efficient
methodology for the design of maximally reusable and
extensible software components for speech and signal
processing. The resulting programming paradigm allows
software components to be advantageously combined with each
other in a way that recalls the concept of hardware plug-and-
play, without the need for incorporating complex schedulers to
control data flows. It has been successfully used for the design
of a software library for high-level speech processing systems at
AT&T Labs, as well as for several other large-scale software
projects.

1. INTRODUCTION

Let us face it: speech technology is progressively coming to the
point where the software implementation of a new idea becomes
at least as valuable as the patent on the idea itself1.

Linear prediction, which was invented some thirty years ago,
can be implemented with only a few tens of lines of code. In
contrast, the software implementation of the multiband excited
(MBE) model requires a lot of care, and several thousands of
lines of code, although the underlying analysis algorithm (which
is already ten years old [1]) can be summarized in a few pages of
text and a dozen of equations. Yet these examples are only
related to acoustic analysis of speech. Higher-level speech
processing systems (whether for speech coding, synthesis, or
recognition) will increasingly make use of phonetic, lexical,
syntactic, and semantic information, which will still make them
more intricate to program. Hence these two statements of faith:

1. Future milestones in speech processing will come from labs
with strong commitment to solid, portable, and extensible code;
2. Speech scientists and software engineers will soon be the
same people.

We start in section 2 with a short introduction to the use of
block-diagram abstractions (and the associated dataflow

1 The other really valuable thing these days being a large labeled
database to put the idea into practice.

semantics) for DSP software development and highlight the
importance of declarative (as opposed to procedural)
programming. This section contains definitions that are used in
sections 3 and 4. In section 3, we introduce a simple and
efficient way of using object oriented languages as an extension
to function-based programming for programming high-level
signal processing systems. This programming paradigm, called
Object Oriented Block Programming (OOBP), mimics the
inclusion and abstraction properties of block-diagrams by
allowing processes to be included into higher-level processes
and by describing each process at three different levels of
abstraction. The use of encapsulation, inheritance, and
polymorphism by its VHDL-like three descriptive levels
(namely entities, architectures, and configurations) completely
captures the spirit of object oriented programming. Applying the
same goal to the description and implementation of data objects
leads us to define, in Section 4, a stream-based class hierarchy
for use as IOs by the above-mentioned OOBP objects. We
conclude in section 5 by commenting on the enhanced
reusability and extensibility properties of applications developed
using such “plug-and-play (PnP)” software components.

2. DECLARATIVE DATAFLOWS

Although procedural languages can be used to mimic block-
diagram descriptions, they explicitly overspecify processes by
imposing not only which functions to call, but also when. Such
overspecification can be avoided with specially designed
declarative languages, which more closely mimic block diagram
descriptions, by implementing a process as a list of
interconnected sub-processes. Programmers no longer have to
specify how processes get fired. In counterpart, they loose some
control on their code which is left to compilers, when firing
decisions can be made statically (i.e., once and for all before the
program is run), or by dynamic schedulers, if not. Such
declarative languages are now extensively used by commercially
available DSP graphical programming environments, such as
Comdisco's Signal Processing Worksystem, HP's Visual
Engineering Environment [2], National Instrument 's LabView
[3], or the Mathworks SimuLink, often presented as
"alternatives to cumbersome text-based programming". The
associated semantics is known as the dataflow semantics. Blocks
in a dataflow diagram exchange information through data
structures. Exchanges are directional (hence, one block is the
sender, and the other is the receiver. Block-programming
systems mainly differ by the way they organize block firing
(data-driven vs. time-driven, static vs. dynamic scheduling,

centralized vs. distributed control), and data control (direct vs.
buffered access).

2.1. Time-driven vs. data-driven

Block processing applications can be classified as data-driven if
their scheduler is based on the existence of a time variable.
Typical examples of time-driven environments are VHDL and
Comdisco ’s Signal Processing Worksystem (SPW). In contrast,
data-driven systems assume that blocks can be fired as soon as
they have enough data at their inputs, without the need for a
clock control. Such a strategy has been implemented in
environments like Ptolemy [5], the object oriented Visual
Engineering Environment of HP, MathWorks SimuLink, or
IRCAM ’s MAX [6].

2.2. Static vs. dynamic scheduling

Since block processing languages generally do not explicitly
specify the order in which blocks have to be fired, some
scheduling is needed. It is shown in [4] and [7] that synchronous
data flows (SDF)2 can be scheduled statically, that is, at compile
time. The compiler is then responsible for finding a sequence of
process calls which loops endlessly to execute the application.
Such a strategy has been put to use in many block programming
environments based on a graphical description (synchronism is
almost always implicitly assumed in this case [8]). Things get
more complex when systems include asynchronous data flows
(ADF). In this case, a block can only be fired when there is
enough data at its input, and when there is enough room in its
output to store the output data. As a matter of fact, since the
number of data items in an asynchronous data flow cannot be
known at compile time, it must be controlled at run time before
running either the receiver or the sender. This is known as
dynamic scheduling.

The advantage of static scheduling is that it requires no
processing overhead. It is thus a must when describing low-level
blocks, the processing of which is rather elementary. One would
not imagine, for example, that each and every adder, multiplier,
and delay of a digital filter would check its input before
processing. In contrast, organizing high-level blocks in a
dynamic way is almost transparent in a computation speed
perspective, since the overhead related to data or space
availability checking is minor in comparison with the
complexity of the processes themselves. 3

2.3. Centralized vs. distributed control

Clearly, with asynchronous data flows, ultimate decisions are
left for run-time. Up to now, we have suggested that they were
made by the scheduler itself by checking some conditions on

2 Two blocks are said to be synchronous when they fire according to a
fixed firing sequence. The are asynchronous otherwise. For a good
introduction to dataflow semantics, see [4].
3 Interestingly enough, most of the processor industry is progressively
adopting dataflows with dynamic scheduling. The Intel Pentium Pro, for
instance, handles internally about 20 data nodes at a time, which makes
it run about 30 percent faster than the Pentium. The recent HP 28000
chip handles 56 nodes [10].

block inputs. This is known as centralized control. One can also
imagine to create a static sequence of possible firings for a given
block-diagram, and still require some firing conditions (on its
input and output dataflows) to be checked before actually firing
a block. In this case there is no need for a centralized software
component to organize firings: firing conditions can be checked
by blocks themselves. This is known as distributed control.

2.4. Direct vs. buffered access to data

Access to dataflows can be seen as direct memory access, i.e.
dataflows are supposed to be implemented as simple memory
locations, loaded or unloaded by blocks. The exact memory
locations where blocks have to read/write data has to be taken
care of by the scheduler, which therefore has to know about the
implementation of dataflows: scheduling needs to be centralized.

Dataflows can be given some responsibility as well, such as that
of organizing FIFO buffers, which can be read from and written
to by blocks without imposing neither a scheduler nor blocks
themselves to know about the actual implementation of
dataflows. This buffering strategy is needed for dynamic
scheduling based on distributed control. This is the one we use
in PnP software.

3. OOBP

The foundations of Object Oriented Block Programming
(OOBP) can be found in [9] (see also the related web site
http://tcts.fpms.ac.be/oobp/oobp.html). The OOBP paradigm has
been used in 1994 for a first version of the C++ library designed
at Faculté Polytechnique de Mons. It has served as a basis for
the implementation of the signal processing software library
developed in the context of the ESPRIT HIMARNNET project.
It has recently been used for the development of a speech
recognition software toolkit combining HMMs and Neural
Networks: STRUT (http://tcts.fpms.ac.be/speech/strut.html). It
has also been put to use for the development of a software
library for high-level speech components at AT&T Labs –
Research. The next paragraphs give a summary of it.

OOBP is a methodology for defining processes as software
classes. It is easy to use: combining OOBP objects into a
program is like combining LEGOs into a building (OOBP
objects have all the same kind of interface). It is not the ultimate
solution to programming problems (some arbitrary choices still
have to be made), but at least it allows the construction of large
software processes as components of a library. What is more
important, OOBP is by no means exclusive: every combination
of structured programming and OOBP is possible, from
functions-only programming to objects-only programming; most
of the time, people mix OOBP with function-oriented
programming.

OOBP is modular and multilevel. Modularity is achieved by
organizing speech processing systems (blocks) into objects (sub-
blocks) related to sub-tasks; it is multilevel in that each sub-task
can be seen as either:

1. An abstract black box, which only knows about the type of its
input(s) and output(s) (although even inputs and output types can

also imply some abstractions; see section 4) and by its abstract
process (the abstract operation performed on the inputs to
compute the outputs). This is what people familiar with VHDL4

call an entity. Entities are implemented in C++5 as pure virtual
objects that declare two methods:

virtual void ioDefine(a_list_of_typed_IOs)=0;
virtual int process()=0;

2. An architecture (as it is also called in VHDL) of such an
abstract black box which additionally defines the process from
the inside. Implementations, however, typically only define sub-
blocks as entities (i.e., leave the implementation of sub-blocks
open). Internal data are generally defined at the architecture
level. Architectures define the two methods declared by entities.

3. A configuration (cf. VHDL again), which additionally
specifies the implementation of all sub-blocks down to
elementary blocks (with no sub-blocks). Configurations are the
only components that can be run. They build configured sub-
blocks and pass them to the underlying architecture.

Last, but not least, OOBP implements data-driven, dynamic
scheduling, with distributed control. Blocks are connected
together via transfer data objects (the interface and
implementation of such data objects is discussed in section 4).
The order in which blocks are given permission to fire is fixed at
compile time, but blocks only fire at run-time if data is available
at their input and when memory space is available at their output
(hence the dynamic feature of OOBP scheduling). Ultimate
decisions are being made by blocks themselves (hence the
distributed control).

OOBP uses object oriented programming as follows:

• Configurations inherit (in the OOP sense) from architectures,
which themselves inherit from entities. This completely captures
the OOBP use of the OOP inheritance concept.

• Architectures are totally responsible for their internal and
transfer data. These are created by architectures during their
construction, and disposed of during their destruction, so that
encapsulation is used to prevent internal variables from being
visible from outside the block they are part of.

• Last, but not least, polymorphism is accounted for by the fact
that sub-blocks of a block are defined as entities in architectures
of that block while an actual configured sub-block is passed to
the architecture to create a configuration of that same block. The
basic idea is that two descendants of the same entity can always
be exchanged without affecting the global functionality of the
higher order blocks that include them: polymorphism ensures
maximum re-usability and extendibility of software components.

4 VHDL is a hardware programming language (for the design of ASICs
mainly) that borrowed a lot of its syntax to ADA. The fact the OOBP
has a lot in common with VHDL is an additional proof of its usefulness
for designing large-scale systems while minimizing the differences
between research and development code.
5 Notice the OOBP paradigm can also be used with Java or even Matlab
v.5.0. All it requires is an object-oriented language.

4. STREAMS AS IO

In order for OOBP to be able to handle asynchronous processes
(the most general case), we have recently developed a data class
hierarchy which implements buffered access to data. Since we
wanted to minimize overspecification of our OOBP blocks
(which frequently happens when blocks embody too much
knowledge of their IOs), we defined minimal interfaces for our
data objects. Thus, similarly to what we do for block objects, we
thus use interface (i.e., purely virtual) objects as ancestors of our
class hierarchy, and all kinds of implementation objects to
practically (as opposed to virtually) handle the data.

4.1. Minimal block-data semantics

Assuming asynchronous mode as a standard, all blocks in an
OOBP library basically have to:
• check for the availability of data at all their inputs,
• check for the availability of memory space at their outputs,
• if the previous two conditions are fulfilled, read the input

data,
• after processing the input data, send the output data (if any)

to their output(s).

This typically implies that blocks know the type of data they
handle, but not how it is stored in, and retrieved from, their
inputs and outputs. In addition, if one assumes that blocks with
memory (i.e., blocks that either need to memorize their past or
store future inputs to process correctly) are responsible for their
internal memory, then there is no need for blocks to access their
inputs or outputs randomly; sequential access is sufficient.
Summarizing, data objects need to be checked for reading and
writing, read sequentially, written to sequentially. Hence, they
can be viewed as typed streams.

4.2. The stream hierarchy

Two generic and pure virtual interface objects are defined:
• InputStream<T>, which only declares reading of data

items of type T:
virtual short readable()=0;

virtual void read(T* buffer, long count)=0;

virtual void maxReadable(long maxReadable) = 0;

• OutputStream<T>, which only declares writing:
virtual long writable() = 0;

virtual void write(T* buffer, long count)=0;

virtual void maxWritable(long maxWritable) = 0;

readable() and writable()are the methods by which
blocks query dataflows at run time to check the availability of
data at their input(s) and the availability of memory space at
their output(s), before entering their process() methods and
using read() and write() on their IOs.

maxReadable() and maxWritable()are run by
architectures at construction time, to be sure that no blocking
situation will arise. This is typically the case when a receiver
block cannot run its process() method because it has not
enough data at one of its input, but the sender cannot run its
process() method itself, because there is not enough

memory available in the buffer used by the dataflow). In order to
avoid such conflicts, architectures ask their sub-blocks about the
maximum amount of data items they will require to read at once
at run time, and about the maximum number of data items they
will want to write at once at run time. Once these bounds are
known for each dataflow, the architecture can impose their size.6

All kinds of implementations can then be defined for these two
objects. As opposed to interface objects, however, which only
need to be either read from or written to, implementations of
these interfaces typically need to be read from by a block and
written to by another. Hence, they inherit from both
InputStream<T> and OutputStream<T>. The main
three such objects are:
� DataQueue<T>, which defines an InputStream<T>

and an OutputStream<T> that stores data items in a
queue located in memory.

� DataFile<T>, which does the same for data items in a
file on disk.

� DataSocket<T>, which does the same for data items
sent to and received from a socket.

These classes can then be further refined so as to provide
implementations of standard data formats, such as all kinds of
audio files for instance.

It is important to understand that OOBP entities declare their
IOs as InputStreams and OutputStreams, so that architectures
and configurations see them as such, too. In contrast, the actual
data objects passed to the IODefine method of blocks can only
be implementations of InputStreams and OutputStreams. Hence,
the knowledge an architecture has of its IOs is really minimized:
blocks know how to ask for data and pass data to their IOs but
not how IOs actually handle the data. This is central for the
design of large software libraries.

The resulting programming paradigm, which combines OOBP
with a class hierarchy of typed streams allows software
components to be advantageously combined with each other in a
way that recalls the concept of hardware plug-and-play, without
the need to incorporate complex schedulers to control data
flows. We therefore call the programming paradigm “Plug and
Play (PnP) software”.

5. REUSABILITY AND EXTENSIBILITY

PnP software helps organizing processing into clearly defined
subtasks, programmed as blocks. Blocks are seen as either
entities (purely virtual objects; the only item they define is the
type of IOs), architectures (first-level block diagram; they see
their sub-blocks as entities they have, and know how to run
them), or configurations (architectures with configured sub-
blocks; the only blocks that can really be run).

Classical high-level systems for speech processing can be
programmed once for all, as architectures that know what to ask
from their sub-blocks, and when, but not how, sub-blocks

6 The size of dataflow buffers cannot be allowed to grow indefintely at
run-time, since dataflows in PnP software are assumed to be blocking.

actually will do it. This is resolved at run-time, by use of
pointers to virtual functions.

Designing a block as a PnP software component does not imply
using PnP software for its sub-blocks. In practice, the
process() method can be everything from a list of
process() calls for sub-blocks to plain C or C++ completely
describing the process. Reciprocally, the PnP software
implementation of blocks is by no means a constraint on their
use. It can be mixed with C in every possible way. This is
precisely why PnP software is just a paradigm, not a complex
environment.

Another advantage of PnP software is that it can easily be
extended to provide programmers with very efficient viewing
and debugging tools. If some implementations of
InputStream<T> and OutputStream<T> are added a
visualization facility, for instance, it is very easy to enable all
high-level objects to display their content when they are
processed (without the need to even recompile blocks).

REFERENCES

1. Griffin, D.W., (1987), Multi-Band Excitation Vocoder,
Ph.D. dissertation, MIT, Cambridge.

2. Beethe, D. C., HP VEE : “A Dataflow Architecture”,
Hewlett-Packard Journal, (october 1992), pp. 84-88.

3. Vose, G.M., Williams, G., “Labview Laboratory Virtual
Instrument Engineering Workbench”, Byte (1986).

4. Lee, E.A., Messerschmitt, D.G., “Synchronous Data Flow”,
Proc. of the IEEE (1987), 75, n° 9, pp. 1235-1245.

5. Buck, J., Ha, S., Lee, E.A., Messerschmitt D.G., “Multirate
Signal Processing in Ptolemy”, Proc. ICASSP 91 (1991),
pp. 1245-1258.

6. Puckette, M., “Combining event and signal processing in
the MAX graphical programming environment”, Computer
Music Journal (1991), 15, n° 3.

7. Lee E.A., Messerschmitt D.G., “Static Scheduling of
Synchronous Data Flow Programs for Digital Signal
Processing”, IEEE Transactions on Computers (1987), C-
36, n° 1, pp. 24-35.

8. Knoll, A., Nieberle, R., “CADiSP - A graphical compiler
for the programming of DSP in a completely symbolic
way”, Proc. ICASSP 90 (1990), pp. 1077-1080.

9. Dutoit, T., and V. Fontaine, "The Object Oriented Block
Programming (OOBP) paradigm: a VHDL-like object
oriented approach toward developing efficient DSP
software libraries", Annals of Telecommunications
(France), March-April 1995, pp. 365-378.

10. Scanlan, J., “Off the clock: Letting dataflow drive
microprocessors”, Wired magazine, August 1997, p. 74.

