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ABSTRACT often reject whole utterance hypotheses because of two reasons.
One reason is because the utterance hypotheses are often ungram-

We propose a novel recognition method for generating an acchmatical with the result that a small number of words are misrecog-
rate grammatical word-graph allowing grammatical deviations. Oufiized in the speech recognition components, even when the input ut-
method uses both an n-gram and a grammar-based statistical lggrance is grammatically correct. The other reason is because spon-
guage model and aligns utterances with the grammar by addifgneous speech is often poorly modeled by conventional grammars,
deviation information during the search process. Our experimenjghich tend to be based on the written form of a language and do not
confirm that the word-graph obtained by our proposed method is sHdequately deal with certain linguistic phenomena that frequently
perior to the one obtained by only using the n-gram with the samgccur in spontaneous speech, such as filled pauses, hesitation and
word-graph density. In addition, our recognition method can seard@brrection. To overcome this problem, a lot of speech dialogue sys-
enormous hypotheses more efficiently than the conventional Worﬁbms use robust parsers [3][8][13][12] that align the recognition hy-
graph based search method. potheses with their grammar and considers deviated parts from the

grammar.
1. INTRODUCTION

However, these robust parsing methods have trouble dealing with
A lot of speech recognition systems [7][9] adopt multi-pass search large amount of recognition hypotheses as their inputs due to the
methods mediated by effective representations for enormous hyigh computational cost. As a result, most of the enormous hypothe-
potheses of continuous speech recognition such as word-grapbss generated by the speech recognition component are discarded in
Also, the conventional speech understanding process of speech dfse stage of the robust parsing. We propose a recognition method
logue systems, including speech translation systems, can be consighere a finite-state machine is used for an robust parser to overcome
ered as a similar multi-pass search process where speech recogis problem. Our robust parsing method can deals with enormous
tion components generate word-graphs, and natural language undgfpotheses represented by word-graphs as the input and generate a
standing (NLU) components generate understanding-level hypothgrammatical word-graph from input utterances even when the utter-
ses from the word-graphs. ances are ungrammatical. The method proposed here is an extension

that we proposed in 1997 [11] where we assumed n-best style utter-
If we consider the multi-pass modeling of the speech understandipgce hypotheses. Experiments will show that our robust parsing
process, we find that a different language model constraint is ayethod can recover recognition errors of word-graphs.
plied for each pass. Statistical language models based on n-grams
are widely used in the speech recognition component, because these 2. PROPOSED METHOD
models can significantly reduce the number of recognition hypothe-
ses during a search as well as accept utterances that deviate frgr_rl_ Formulation
conventional written grammars. On the other hand, the NLU com-

ponent uses a grammar to analyze syntactic structures as well gpeech recognition problem is conventionally formulated to ob-

semantic knowledge, and the grammar and semantic knowledge g, the most probable word sequefiEethat maximizes?(W|0),
usually developed independently from an n-gram used by the spegghere0 is the input speech as shown in (1).
recognition component. Since the both language models in these

two components work as different types of linguistic constraints, the argmaz P(W10)
understanding-level hypotheses are constrained by both language
models. = argmaz P(OW)P(W). Q)

However, the direct connection of the conventional speech recogrt contrast, we formulate a speech recognition problem to obtain
tion and NLU components often is not robust because of the grarfe tagged word sequent€ér as well asV’ as follows.
mar in the NLU components. The conventional NLU components argmaz P(Wr, W|0)

VW, W



= argmaz P(O|Wz, W)P(Wg, W). ) WWMWWWW o
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Furthermore, we can rewrite (2) assuming tais independent of 1 -—

Wr.
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= argmaz P(O|W)P(W)P(Wy|W). 3)
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Comparing (3) to the conventional formula (1F(Wrz|W) is

added, which denotes the likelihood of tags or.
Inthe proposed method, we use a conventional n-gram based mod W: hi(interj) saw(verb) girl(noun)

.

for P(W), and use a grammatical model which considers devia- with(prep) a(det) telescope(noun) @
tions for P(Wr|W). We use a grammar that generates part-of- .
speech sequences for the grammatical model. We use the tags d Wt: hi(Subst<pron>) saw(verb)

g(Del<det>) girl(noun)

noting part-of-speech as well as grammatical deviations, namely in- with(prep) a(det) telescope(noun)

sertions, deletions or substitutions. For example, suppose that the
input utterance is “I(pron) saw(verb) a(det) girl(noun) with(prep)
a(det) telescope(noun),” and thafWr| W) is modeled by a gram-
mar that generates the input utterance. We may obtain the most Figure 1: Method Outline
probableWV and W as follows because of the local recognition
error.
2.3. Grammatical Deviation Model

W hisaw girl with a telescope For efficiency, we adopt a finite-state machine as the representa-

Wr: hi(Substpron) saw(verb)e(Dekded) girl(noun) tion of the grammar in the second pass. After the method we have
with(prep) a(det) telescope(noun) proposed [11], we use a finite-state transducer (FST) to mark the
deviated parts from the grammar, and the FST is an extension of
a finite-state automaton (FSA), where output symbols are added.
We can consider the obtainddi to be mapped fromiV’ so that  First, the underlying grammar (W |W) is described by hand
the target will be aligned to a grammar. When using the part-ofss a context-free grammar. Next, an FSA approximating the CFG is
speech grammatical model, the grammatical parts are tagged by Higomatically generated. Finally, an FST is constructed by adding
part-of-speech, and the deviated parts are tagged by estimated pggnsitions that represent deviations from the underlying grammar
of-speech with deviation type markers such as Ins, Del and Subst.dfich as insertions, deletions and substitutions.
P(W,|W) properly models the grammatical deviations caused by
recognition errors as well as other factofB, obtained by (3) can We use the Poisson distribution shown in equation (4) to model de-
be more accurate than that obtained by (1). viations from a grammar. This model assumes that each type of
grammatical deviations is independent and that the duration of each
Furthermore, we have another interpretatiortiof. If the under-  ytterance is almost equal. Although these assumptions are rather

lying grammar of P(Wr|W') properly models the input utterance rough, the modeling is adequate to show the effectiveness of our
andP(Wr|W) properly models grammatical deviations caused byyroposed recognition method.

recognition errorsy¥r can be considered as a recovered word se-
quence fromW. Since the method here use part-of-speech gram-

mar, the recovered parts can possibly be adjusted to the correct part- krakD yEs
ATADAS i -ap—as

of-speech. The following experiments will show the effectivenesgn(wﬂw) - @)
of recovering errors by¥ 7. kr'kplks!

Ar,Ap,As : the average number of insertions, deletions and
2.2. Multi-Pass Search Strategy substitutions in an utterance,
Figure 1 shows the outline of our method. We adopt a multi-pasér; ko, ks :  the number of insertions, deletions and substi-
search strategy to obtain the probable hypothesdd” cind W tutions in an utterance

in equation (3). In the first pass, a word-graph that repredénts

hypotheses are obtained by usifgO|W ) P(W'), namely by the

conventional manner based on an n-gram. In the second pass2 & . Word_Graph Re-Generation

W word-graph is re-scored witf?(O|W)P(W)P(W¢|W), and

a Wr word-graph is simultaneously generated using a grammdihe word-graph re-generation process in the second pass can be ac-
based model. tualized by integrating an FSA intersection algorithm with&h



search. A word-graph obtained in the first pass can be seen asla@abase consists of human-to-human roleplays. One person is a
kind of an FSA if the score is ignored. Similarly, an FST that reprecustomer and the other is a clerk in the dialogue. Utterances are
sents a deviation model from a grammar is also an FSA if the outpapontaneous and overlap between utterances is prohibited.
symbols are ignored. As the intersection of these two FSAdjithe
word-graph can be generated in the second pass. In the same W&, use a part-of-speech based FSA that has 263 states and 4,963
the Wy word-graph can be generated as the intersection of FS&siges for the underlying grammar of the deviation model. The FSA
except that the symbols of its transitions correspond to the outpif @pproximately generated from a CFG [10] developed for speech
symbols of the FST, not the input symbols. We can prune the ifecognition. All utterances in the test set, i.e., the pronounced word
tersection word-graphs by af* search considering scores while sequences are acceptable to the FSA. Disfluencies are outside of
generating them. the scope of the grammar. In other words, test-set utterances were
selected with the condition that the utterance is acceptable to the

3. EXPERIMENTS FSA.

We used a variable-order n-gram [4] for the n-gram based lan-
guage model trained from 32,074 utterances in the ATR sponta-
As mentioned in 2.1, our method can recover the recognition ef€0US speech database, which did not overlap with the test utter-
rors of a conventional recognition method. To confirm this advarfCeS- The vocabulary size of the recognition dictionary was 7,219
tage, we compare the accuracyf obtained by the conventional words, and the test set did not contain any out-of-vocabulary words.
method based only on the n-gram with that/Bf obtained by our
method. We use theetwork word accuracfor the accuracy mea-
sure. The network word accuray is the highgetd accuracyof all
word-graph paths, where the word accuracy is defined as (5).

3.1. Experimental Purpose and Measures

The parameters of the grammatical deviation model were also
trained by the recognition results of the training utterances. In this
experiment, we intended to model all recognition errors as gram-
matical deviations. Therefore, we could obtain the parameters by
just counting insertions, deletions and substitutions in an alignment

between references and hypotheses obtained by only using the n-
N—-({I+4+D+5)

word accuracy = — X 100 (5) 9ram.
As described in 2.2, our method re-scores the word-graph with
N': Number of correct words P(O|W)P(W)P(Wr|W) in the second path. Since we only con-
I: Number of insertion errors sider network word accuracy in this experiment, we do not take re-

scoring into account in order to avoid too much complexity. We
only use theP? (W |W) score to limit the search space in the second
St Number of substitution errors pass. As a result, only one part consisting of continuous deviations

is allowed in theéV 1 generated by the second pass.

There are non-word parts for th& word-graph because the er-

ror parts are recovered as estimated part-of-speechWkhevord 3.3, Experimental Results

accuracyis obtained by only considering if the part-of-speech is

correct for the part-of-speech parts. In order to evaluate fairly, weor 398 of 428 test utterances, we could obtain the recovered word-

also generate a typical word-graph by extending part-of-speech goaph in the second pass. In other words, the word-graph of the rest

words in aW; word-graph and comparing the network word accu-of the utterances obtained in the first pass has more than one part

racies. The substituted parts are extended to the words that have tloasisting of continuous deviations.

most similar pronunciations, and the deleted parts are extended to

the words that have the shortest pronunciations. Figure 2 shows the network accuracy of the 398 utterance word-
graphs obtained in the first and second passes corresponding to the

Since the network word accuracy depends on the size of the wondkord-graph density. We define the 398 utterance as setO and 156

graph, we should take its size into account when comparing the nettterances in setO as setl, whose top hypotheses of the first pass

work word accuracies. We useyeaph densitydefined in (6) for the deviate from the grammar. The upper dots are for set0 and the lower

D: Number of deletion errors

measure of the word-graph size. dots are for setl in Figure 2" denotes a word-graph obtained in
e the first pass. @" denotes al¥r word-graphs obtained from the
word graph density = v (6) highest density word-graph of the first pass<”‘denotes a word-
graph extended from thé’r word-graph. %" denotes the pruned
W: Number of words in the word graph word-graph by the? (Wr|W) score from the highest density word-

graph of the first pass.
N: Number of correct words

In both set0 and set1+" is on the line of “>” dots. This indicates
3.2. Experimental Conditions that the pruning with the?(W|W) score is adequate. Also?”

and “x” is higher than the prolongation of the>” dots line. This
We used 428 utterances from Japanese hotel-reservation dialogirsticates that the second pass improves the word-graphs obtained
in the ATR spontaneous speech database [5][6] for a test set. Tinethe first pass. Improvement in the second pass is more drastic in
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Figure 2: Experimental Results

. 4,
setl, probably because there are more deviations from a grammar

in the first pass word-graph.

Efficiency is another advantage of our method. Usually, the com-5.
putational cost of a search linearly increases according to the word-
in CPU time for the

first pass in set0, it takes only 1,790 sec. for the second pass and

graph density. Although it takes 2,012 sec.

the part-of-speech extension from thé- word-graph. The word-
graph density o#¥ 7 is 10 times more than that of the word-graph

obtained by the first pass. The size of the word-graph obtained by
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