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ABSTRACT

We propose a novel recognition method for generating an accu-
rate grammatical word-graph allowing grammatical deviations. Our
method uses both an n-gram and a grammar-based statistical lan-
guage model and aligns utterances with the grammar by adding
deviation information during the search process. Our experiments
confirm that the word-graph obtained by our proposed method is su-
perior to the one obtained by only using the n-gram with the same
word-graph density. In addition, our recognition method can search
enormous hypotheses more efficiently than the conventional word-
graph based search method.

1. INTRODUCTION

A lot of speech recognition systems [7][9] adopt multi-pass search
methods mediated by effective representations for enormous hy-
potheses of continuous speech recognition such as word-graphs.
Also, the conventional speech understanding process of speech dia-
logue systems, including speech translation systems, can be consid-
ered as a similar multi-pass search process where speech recogni-
tion components generate word-graphs, and natural language under-
standing (NLU) components generate understanding-level hypothe-
ses from the word-graphs.

If we consider the multi-pass modeling of the speech understanding
process, we find that a different language model constraint is ap-
plied for each pass. Statistical language models based on n-grams
are widely used in the speech recognition component, because these
models can significantly reduce the number of recognition hypothe-
ses during a search as well as accept utterances that deviate from
conventional written grammars. On the other hand, the NLU com-
ponent uses a grammar to analyze syntactic structures as well as
semantic knowledge, and the grammar and semantic knowledge are
usually developed independently from an n-gram used by the speech
recognition component. Since the both language models in these
two components work as different types of linguistic constraints, the
understanding-level hypotheses are constrained by both language
models.

However, the direct connection of the conventional speech recogni-
tion and NLU components often is not robust because of the gram-
mar in the NLU components. The conventional NLU components

often reject whole utterance hypotheses because of two reasons.
One reason is because the utterance hypotheses are often ungram-
matical with the result that a small number of words are misrecog-
nized in the speech recognition components, even when the input ut-
terance is grammatically correct. The other reason is because spon-
taneous speech is often poorly modeled by conventional grammars,
which tend to be based on the written form of a language and do not
adequately deal with certain linguistic phenomena that frequently
occur in spontaneous speech, such as filled pauses, hesitation and
correction. To overcome this problem, a lot of speech dialogue sys-
tems use robust parsers [3][8][13][12] that align the recognition hy-
potheses with their grammar and considers deviated parts from the
grammar.

However, these robust parsing methods have trouble dealing with
a large amount of recognition hypotheses as their inputs due to the
high computational cost. As a result, most of the enormous hypothe-
ses generated by the speech recognition component are discarded in
the stage of the robust parsing. We propose a recognition method
where a finite-state machine is used for an robust parser to overcome
this problem. Our robust parsing method can deals with enormous
hypotheses represented by word-graphs as the input and generate a
grammatical word-graph from input utterances even when the utter-
ances are ungrammatical. The method proposed here is an extension
that we proposed in 1997 [11] where we assumed n-best style utter-
ance hypotheses. Experiments will show that our robust parsing
method can recover recognition errors of word-graphs.

2. PROPOSED METHOD

2.1. Formulation

A speech recognition problem is conventionally formulated to ob-
tain the most probable word sequenceW that maximizesP (W jO),
whereO is the input speech as shown in (1).

argmax
W

P (W jO)

= argmax
W

P (OjW )P (W ): (1)

In contrast, we formulate a speech recognition problem to obtain
the tagged word sequenceWT as well asW as follows.

argmax
WT ;W

P (WT ;W jO)



= argmax
WT ;W

P (OjWT ;W )P (WT ;W ): (2)

Furthermore, we can rewrite (2) assuming thatO is independent of
WT .

� argmax
WT ;W

P (OjW )P (WT ;W )

= argmax
WT ;W

P (OjW )P (W )P (WT jW ): (3)

Comparing (3) to the conventional formula (1),P (WT jW ) is
added, which denotes the likelihood of tags forW .

In the proposed method, we use a conventional n-gram based model
for P (W ), and use a grammatical model which considers devia-
tions for P (WT jW ). We use a grammar that generates part-of-
speech sequences for the grammatical model. We use the tags de-
noting part-of-speech as well as grammatical deviations, namely in-
sertions, deletions or substitutions. For example, suppose that the
input utterance is “I(pron) saw(verb) a(det) girl(noun) with(prep)
a(det) telescope(noun),” and thatP (WT jW ) is modeled by a gram-
mar that generates the input utterance. We may obtain the most
probableW andWT as follows because of the local recognition
error.

W : hi saw girl with a telescope

WT : hi(Substhproni) saw(verb)�(Delhdeti) girl(noun)
with(prep) a(det) telescope(noun)

We can consider the obtainedWT to be mapped fromW so that
the target will be aligned to a grammar. When using the part-of-
speech grammatical model, the grammatical parts are tagged by the
part-of-speech, and the deviated parts are tagged by estimated part-
of-speech with deviation type markers such as Ins, Del and Subst. If
P(WT jW ) properly models the grammatical deviations caused by
recognition errors as well as other factors,W obtained by (3) can
be more accurate than that obtained by (1).

Furthermore, we have another interpretation ofWT . If the under-
lying grammar ofP (WT jW ) properly models the input utterance
andP (WT jW ) properly models grammatical deviations caused by
recognition errors,WT can be considered as a recovered word se-
quence fromW . Since the method here use part-of-speech gram-
mar, the recovered parts can possibly be adjusted to the correct part-
of-speech. The following experiments will show the effectiveness
of recovering errors byWT .

2.2. Multi-Pass Search Strategy

Figure 1 shows the outline of our method. We adopt a multi-pass
search strategy to obtain the probable hypotheses ofW andWT

in equation (3). In the first pass, a word-graph that representsW

hypotheses are obtained by usingP (OjW )P (W ), namely by the
conventional manner based on an n-gram. In the second pass, a
W word-graph is re-scored withP (OjW )P (W )P (WT jW ), and
a WT word-graph is simultaneously generated using a grammar
based model.

with(prep) a(det) telescope(noun)
ε(Del<det>) girl(noun)

  saw(verb) Wt: hi(Subst<pron>)

1st pass

2nd pass FST

n-gram

FSA

CFG

W:  ....

O: I saw a girl with a telescope

W: hi(interj) saw(verb) girl(noun)
     with(prep) a(det) telescope(noun)

Figure 1: Method Outline

2.3. Grammatical Deviation Model

For efficiency, we adopt a finite-state machine as the representa-
tion of the grammar in the second pass. After the method we have
proposed [11], we use a finite-state transducer (FST) to mark the
deviated parts from the grammar, and the FST is an extension of
a finite-state automaton (FSA), where output symbols are added.
First, the underlying grammar ofP (WT jW ) is described by hand
as a context-free grammar. Next, an FSA approximating the CFG is
automatically generated. Finally, an FST is constructed by adding
transitions that represent deviations from the underlying grammar
such as insertions, deletions and substitutions.

We use the Poisson distribution shown in equation (4) to model de-
viations from a grammar. This model assumes that each type of
grammatical deviations is independent and that the duration of each
utterance is almost equal. Although these assumptions are rather
rough, the modeling is adequate to show the effectiveness of our
proposed recognition method.

P (WT jW ) =
�
kI
I �

kD
D �

kS
S

kI !kD!kS!
e
��I��D��S (4)

�I ; �D; �S : the average number of insertions, deletions and
substitutions in an utterance,

kI ; kD; kS : the number of insertions, deletions and substi-
tutions in an utterance

2.4. Word-Graph Re-Generation

The word-graph re-generation process in the second pass can be ac-
tualized by integrating an FSA intersection algorithm with anA�



search. A word-graph obtained in the first pass can be seen as a
kind of an FSA if the score is ignored. Similarly, an FST that repre-
sents a deviation model from a grammar is also an FSA if the output
symbols are ignored. As the intersection of these two FSAs, theW

word-graph can be generated in the second pass. In the same way,
theWT word-graph can be generated as the intersection of FSAs
except that the symbols of its transitions correspond to the output
symbols of the FST, not the input symbols. We can prune the in-
tersection word-graphs by anA� search considering scores while
generating them.

3. EXPERIMENTS

3.1. Experimental Purpose and Measures

As mentioned in 2.1, our method can recover the recognition er-
rors of a conventional recognition method. To confirm this advan-
tage, we compare the accuracy ofW obtained by the conventional
method based only on the n-gram with that ofWT obtained by our
method. We use thenetwork word accuracyfor the accuracy mea-
sure. The network word accuray is the highestword accuracyof all
word-graph paths, where the word accuracy is defined as (5).

word accuracy =
N � (I +D + S)

N
� 100 (5)

N : Number of correct words

I: Number of insertion errors

D: Number of deletion errors

S: Number of substitution errors

There are non-word parts for theWT word-graph because the er-
ror parts are recovered as estimated part-of-speech. TheWT word
accuracyis obtained by only considering if the part-of-speech is
correct for the part-of-speech parts. In order to evaluate fairly, we
also generate a typical word-graph by extending part-of-speech to
words in aWT word-graph and comparing the network word accu-
racies. The substituted parts are extended to the words that have the
most similar pronunciations, and the deleted parts are extended to
the words that have the shortest pronunciations.

Since the network word accuracy depends on the size of the word-
graph, we should take its size into account when comparing the net-
work word accuracies. We use agraph densitydefined in (6) for the
measure of the word-graph size.

word graph density =
W

N
(6)

W : Number of words in the word graph

N : Number of correct words

3.2. Experimental Conditions

We used 428 utterances from Japanese hotel-reservation dialogues
in the ATR spontaneous speech database [5][6] for a test set. The

database consists of human-to-human roleplays. One person is a
customer and the other is a clerk in the dialogue. Utterances are
spontaneous and overlap between utterances is prohibited.

We use a part-of-speech based FSA that has 263 states and 4,963
edges for the underlying grammar of the deviation model. The FSA
is approximately generated from a CFG [10] developed for speech
recognition. All utterances in the test set, i.e., the pronounced word
sequences are acceptable to the FSA. Disfluencies are outside of
the scope of the grammar. In other words, test-set utterances were
selected with the condition that the utterance is acceptable to the
FSA.

We used a variable-order n-gram [4] for the n-gram based lan-
guage model trained from 32,074 utterances in the ATR sponta-
neous speech database, which did not overlap with the test utter-
ances. The vocabulary size of the recognition dictionary was 7,219
words, and the test set did not contain any out-of-vocabulary words.

The parameters of the grammatical deviation model were also
trained by the recognition results of the training utterances. In this
experiment, we intended to model all recognition errors as gram-
matical deviations. Therefore, we could obtain the parameters by
just counting insertions, deletions and substitutions in an alignment
between references and hypotheses obtained by only using the n-
gram.

As described in 2.2, our method re-scores the word-graph with
P (OjW )P (W )P (WT jW ) in the second path. Since we only con-
sider network word accuracy in this experiment, we do not take re-
scoring into account in order to avoid too much complexity. We
only use theP (WT jW ) score to limit the search space in the second
pass. As a result, only one part consisting of continuous deviations
is allowed in theWT generated by the second pass.

3.3. Experimental Results

For 398 of 428 test utterances, we could obtain the recovered word-
graph in the second pass. In other words, the word-graph of the rest
of the utterances obtained in the first pass has more than one part
consisting of continuous deviations.

Figure 2 shows the network accuracy of the 398 utterance word-
graphs obtained in the first and second passes corresponding to the
word-graph density. We define the 398 utterance as set0 and 156
utterances in set0 as set1, whose top hypotheses of the first pass
deviate from the grammar. The upper dots are for set0 and the lower
dots are for set1 in Figure 2. “3” denotes a word-graph obtained in
the first pass. “2” denotes aWT word-graphs obtained from the
highest density word-graph of the first pass. “�” denotes a word-
graph extended from theWT word-graph. “+” denotes the pruned
word-graph by theP (WT jW ) score from the highest density word-
graph of the first pass.

In both set0 and set1, “+” is on the line of “3” dots. This indicates
that the pruning with theP (WT jW ) score is adequate. Also, “2”
and “�” is higher than the prolongation of the “3” dots line. This
indicates that the second pass improves the word-graphs obtained
in the first pass. Improvement in the second pass is more drastic in
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Figure 2: Experimental Results

set1, probably because there are more deviations from a grammar
in the first pass word-graph.

Efficiency is another advantage of our method. Usually, the com-
putational cost of a search linearly increases according to the word-
graph density. Although it takes 2,012 sec. in CPU time for the
first pass in set0, it takes only 1,790 sec. for the second pass and
the part-of-speech extension from theWT word-graph. The word-
graph density ofWT is 10 times more than that of the word-graph
obtained by the first pass. The size of the word-graph obtained by
our proposed method is so large that the conventional search method
[9] cannot obtain such a high density word-graph.

4. DISCUSSION

The current experiment gives less consideration to the score of each
hypothesis. We can probably give a score to the re-generated word-
graph and prune it to an adequate density in future work. In addi-
tion, we should improve the top word accuracy as well as the net-
work word accuracy.

Our proposed method still has room for improvement. Our method
gives less consideration to pronunciations and word length for mod-
eling the grammatical deviations due to recognition errors. For ex-
ample, Kaki et al. [2] consider character co-occurrence that implic-
itly reflect pronunciations, and Ishikawa et al. [1] consider pronun-
ciations for recovering errors. Although these two methods cannot
recover enormous hypotheses so far, the constraints used for recov-
ering errors are useful.

5. CONCLUSION

A novel recognition method that uses both an n-gram and a gram-
matical deviation model has been proposed. Our proposed method
can generate grammatical word-graphs that are more accurate than
those obtained by the conventional method. In addition, our method
can search huge hypotheses more efficiently than the conventional
search method.
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