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ABSTRACT language model and word graphs [6, 9, 13]. It is possible to com-
bine several confidence measures of the same and/or neighboring
In the context of command-and-control applications, we exploifyord hypotheses to solve the decision problem as demonstrated
confidence measures in order to classify single-word utteranceg [3, 6, 10, 11]. However, complex combination strategies do
into two categories: utterances within the vocabulary whictot significantly outperform simpler linear feature combinations
are recognized correctly, and other utterances, namely out-q5].
vocabulary (OOV) or misrecognized utterances.
In Section 2 and 3, we introduce the procedure to arrive at the
To this end, we investigate the classification error rate (CERjest classification given the model parameters. Section 4 and 5
of several classes of confidence measures and transformatiofgroduce the experimental setup and results, respectively. Finally,
In particular, we employed data-independent and data-dependgy draw conclusions in Section 6.
measures. The transformations we investigated include mapping
to single confidence measures, LDA-transformed measures, and 2 Best classification with given model
other linear combinations of these measures. These combinations parameters
are computed by means of neural networks trained with Bayes-

optimal, and with Gardner-Derrida-optimal criteria. We address the following question: after selecting the set of raw

Compared to a recognition system without confidence measurérSIPUt parameters (see_ follqwmg sections), can we define a clas-
the selection of (various combinations of) confidence measures?']ﬂer for _u_tterance verlflc_atlom()_() gnd a threshold S.UCh. that
the selection of suitable neural network architectures and trairt1-e conditionf(X) < r will classify into class: = 0 (ejection),

o 5
ing methods, continuously improves the CER. Additionally, weanOI otherwise = 1 (acceptance)’

found that a Iipear perceptron generalizes better than a non-IineWe shall treat this problem in the framework of probability den-
backpropagation network. sity functionsP(.) and conditional probability density functions
. P(.].), where it is understood that these functions are not known
1 Introduction to us but that our aim is to reproduce them, using the samples at

our disposal. Itis clear that the decision boundafyX') = = will

In this paper, we address the problem of con_f_idence estimatiﬁ) eally, after Bayes’ decision rule, have to be equal to the Bayes
for isolated, speaker-dependent word recognition based on hi osterior decision bounda®(c = 1)X) = P(c = 0|X) = 0.5,

den Markov models. With an increasing number of users qof .

mmand-and-control lications with h inout. the n th the Bayes posterior probabilify(C|X) of classC' given the
command-and-control applications v speech Input, e NEGRsarvationk. We take into account the possible presence of out-
for reliable speech recognition also increases. When the spe

. . : . . Y StEls and misclassifications in our training set and will therefore
input is recognized reliably, the need to verify a speaker's input I@xperiment in Section 3 with a careful adjustment of the decision
a dialog structure diminishes. Therefore, the aim of this work i%oundaryf(X) -

to judge the word recognition result and to determine whether we
have to ‘accept’ or ‘reject’ this result. This decision is based o general nonlinear function can be realized by a Multilayer Neu-
speaker-independent, speaker-dependent, and word-specific cR{}Net architecture which in principle is known [7] to be able to
fidence measures. We do not apply elaborate garbage models Rigdel arbitrary functional forms. However, it is also known [1]
investigate the performance of several classes of confidence mgasi more detailed functional approximation may lead to a loss in
sures and transformations. We investigate novel combinations @éneralization ability. In order to check these competing effects
data-dependent confidence measures leading to a very effectiy@ the specific problems discussed here, we performed experi-
and efficient classifier. ments with multilayer networks in Section 5.4. We indeed found

. . . he trainin | match xcellently, albeit onl
In the literature, we find a number of confidence measure re%%at the training data could be matched excellently, albeit only

izations related to the acoustic model, the search process and
language model. Examples of confidence measures applied to the
acoustic model are [2, 10], to the decoding process [4], and to

vith a loss of generalization ability. Therefore, we have indica-
s that linear functiong indeed outperform nonlinear ones.



In order to deal directly with the functional forms ¢f.), we liesinthe rangé—1,1). In the case of complete misclassification
adopt a vector notation. A particular sample from the set ot approaches the valuesl which makes (4) exactly equivalent
raw input parameter&’ will be the vectorX,4,,. For a linear to conventional Perceptron learning [8]. Note that equating (4) to
functional form of f(.), we can first of all include the thresh- 0 is a fixed-point equation faf which however cannot be solved
old in f(.) simply by augmentin&,4,y With a constant to give  analytically, which justifies the Neural Network approach.

X = (Xraw» 1). The decision boundarfy(X) = r is then equiv-

alent toa def J-X = 0, where we have to find the components 3 Fine‘tuning the result

of J. Note that in this formulation we do not attempt to model|_| ) ined th K in this B imal ith
P(C|X), but just the Bayes posterior decision boundary follow- aving t_ralne t e netwpr In this ayes'Opt'ma sense (W't_
ing from P(C|X). decreasing over time) still leaves us with the problems of outliers

or misclassified data in our samples. Our assumptions for validity
The following discussion is stimulated by [1]. Let us first of allof the functional form (1) may also lead to non-optimality of the
show under which conditions the Bayes posterior ditribution caffsult obtained so far.

be modelled as a function af Using Bayes theorem, it can be
seen as follows that the Bayes posterior can be written in the si

g_ow can these problems be tackled? Although the cross entropy
moid form

rror has the pleasing property of estimating small probabilities
much better than a LMS error function, which is favorable in the

y = Plc=1|X) = g(a') def % (1) case of outliers, other choices of error functions such as regular-
l+e ized or marginalized ones [1] can be considered. This is outside
with x NP ) the scope of this paper.
a,—lnp( |c_ ) (C_ ) @)

T p(X|e=0)P(c=0) Instead, we fine-tuned our result f@rat the decisiorboundary
We now assume that the class-conditional densit{g§|C') are  Tothis end, an algorithm developed by one of the authors [12] was
members of thexponential familyf distributions with common  used to include further data into the set of correctly classified pat-
non-linear dependance of the exponentXgg,y, and individual ~ terns. TheGardner—Derridaerror function in [12], measuring the
linear dependance oK. Bernoulli and Gaussian distribu- humber of correctly classified data, is maximized. By doing so,
tions are special cases of members of this family. Inserting theutliers or orignally misclassified data are ignored for the calcula-

functional form of these class-conditional densities into (2), wé&on of J. This results in a shift of the decision boundary, together

indeed obtain’ = J - Xygqy — 7 = a. with a higher number of correctly classified data, and improved
classification ability in the test sets (Section 5.2).

We have therefore established that the use of a sigmoid form (1),

with a = J- X, always applies given the stated functional form of 4 Experimental setup

the class-conditional densities. Since the latter is only a very mild

restriction, ouransatzis correct under rather general conditions.The employed database contains single word utterances by 50 in-

However, we shall later see that fine-tuning of the result can leatividuals (25 male, 25 female) who each spoke four to six ut-

to better generalization which can be interpreted as an artefacttefances of 10 given words plus a number of additional out-of-

these assumptions only applying approximately in our test casegocabulary (OOV) utterances. The development data model 500
words with hidden Markov models each trained with only two ad-

Since we are only interested in classification, we may apply diditional utterances. The number of states of a word model equals

rectly from (1) the decision boundary = 0, i.e., we never actu- about 0.8 times the number of observed frames and each state

ally need to compute the posterior probability. Note however thajontains only one density. The acoustic preprocessing employs a

this computation can become useful if training and test scenarfeame-shift of 20ms and computes 20 cepstral features, including

have differenknownpriors P(C') and P (z|C) which can then be  derivatives, for every feature vector. The evaluation data contains

taken care of very simply by multiplications. a total of 3345 utterances, 2861 utterances to test the word mod-

] ) ) ) _els and 484 OOV utterances evenly distributed over all speakers.
Having established the functional form of a Bayes posterior distpe ¢jassification error rate (CER), which is the number of cor-

tribution, we now look at a suitable error function that will bé ¢y tagged words divided by the total number of words, is used
minimized. Following standard arguments [1], for binary classifiy compare results.

cations we minimize over all sampléshe Cross Entropy5]
For each utterance of the development and evaluation data, we
E=- Z{ci log(y:) + (1 —ci)log(1 —wi)}.  (3) compute a vector with confidence measures. Because the con-
i fidence measures obtained from the development data partially
We find aJ that minimizes (3) if we apply a stochastic sequencexhibit a behavior completely different from the measures com-
of additive modificationgJ. To this end, we choose a constantputed on the evaluation data, we split the set of 3345 vectors of
n and, at each step, we choose randomly an inpuid update  confidence measures randomly in two parts. One part contains
along the negative gradient &f with respect tal, 1672 vectors and is used to train the confidence classifier. The
OF other part of 1673 vectors is used for testing and for all test re-

(06I)(3) = —n Ba, Vilai) = nX,; (ci — m) (4)  sults given in this paper.

This defines our learning rule for a Neural Network with one layein our experiments, we employ five basic confidence measures.
and sigmoid output function (1). Note that the term in parentheses




Each confidence measure is computed at the end of a word Hirat of the individual confidence measures. The improvement is
pothesis with loglikelihood,, at timet.,q while the word started measured compared to the CER=10.2% of the single ‘two-best’
attsare. The ‘two-best’ measure contains the loglikelihood dif-measure. To this end, we employ linear discriminant analysis
ference between the best and second best hypothesis at time(tDA). The LDA transform matrix is a linear transformation, esti-
while the ‘n-avg-best’ measure contains the difference betweamated on the 1672 training vectors, and applied in this experiment
the best and the average loglikelihood of the N-best hypothesds.the test data either for full transformation or for projection to
The measure ‘n-best-states’ is computed as the difference of thee eigenvector with highest eigenvalue (marked “1st ev.” in ta-
loglikelihood of the word hypothesis and the sum of the best statdes). We estimate two LDA matrices with dimension 5x5 and
hypotheses over the interal;art, tena]. The ‘avg-acoustics’ di- 20x20 for the original vectors of confidence meastu¥gs and
videsly, /(tend —tstart +1). The ‘speaking-rate’ divides the num- the extended vectoiX,,,. Additionally, we classify bottX ; and

ber of speech frames of the word hypothesis by the number &, with the one-layer perceptrohas explained in Section 2.
states in the word model.

Besides a speaker-independent setup, we can use a speaifable 2: The classification error rate [%] for combined confi-
dependent or even word-dependent setup. Instead of the dedgénce measures.
sion problemf(X) < 7 with a fixed threshold- for all speakers

i and wordsw;, we employ one threshold for all data but first Combination Error rate

subtract a speaker or word-specific off€t or O; .., respec- LDA (d=5), 1stev. | 10.4 | (+2.0%)

tively. The decision problem is thefy(X) — ©;) < 7 and LDA (d=20), 1stev.| 9.0 | (-11.8%)

(f(X) = Oiw;) < 7, respectively. This approach is investigated Bayes (d=6)J 8.4 | (-17.6%)

in Section 5.3. Bayes (d=21)J 8.5 | (-16.7%)

Proper classification of the vector of confidence measkres=

(z1,...,25) probably cannot be done linearly. ~Therefore,Although the LDA and the perceptron both employ a vector multi-
we optionally appen;j taX; the 15 2nd-order components piication to classify the input, the LDA improves the classification
(1, 2122, 2123, ..., x5). This leads to a 20 dimensional vector gyror rate by 11.8% (rel.) to 9.0% while the perceptron improves

X, Which can be treated with standard scalar multiplications. the classification error rate by 17.6% (rel.) to 8.4%.

5 Experiments 5.3 Data-dependent confidence measures

In the initial, speaker-dependent recognition system without any and combination

confidence measures, the classification error rate equals the W?—rigst we investiate the effect of personalizing the ‘ava-acoustic’
error rate of 16.7%. We compute an optimal threshold on the ™" 9 P 9 g

s and ‘speaking-rate’ measures. For the ‘avg-acoustic’ measure,
training set and apply that threshold to the test set. we subtracted speaker-specific and word-specific oft8gtsand
¥ - _05%,, respectively, as explained in Section 4. WHi¥* con-
5.1 Speaker mdependent confidence mea tains the average value of ‘avg-acoustic’ on all training utterances
sures of speakeri, 0%%, contains the average value of ‘avg-acoustic’

] ) ] o for only the two fraining utterances of wordof speakeri. In
We investigate the tagging accuracy of the five individual confiyne case of the speaking rate, we determine the oft¢tsand

dence measures in a speaker-independent setting. For historigal  gimilar to the ‘avg-acoustic’ measure. We compared min-

reasons, the classification error rate of 10.2% for the ‘two-besrmil’jﬁ{] maximum and mean functions to obtain word-dependent

confidence measure serves as a baseline classification error rate, speaker-dependent offsets and found the best performance
for the other experiments. This means that the single confidengs, taking the mean ‘avg-acoustics’ and the maximum ‘speaking

measure ‘n-avg-best' already yields a small improvement of 3.9%te' The results are presented in Table 3 while combinations of
(rel.) against the baseline. However, the other confidence megsnfidence measures are presented in Table 4.
sures yield a higher classification error rate .

Table 1: The classification error rate [%] for individual confi- Taple 3: The classification error rate [%] for single, individual

dence measures. confidence measures which are speaker and word dependent, re-
Confidence measure| Error rate spectively.
two-best 10.2

i Error rate

n-avg-best 9.8 Ec;r;fslitregce Speaker Speaker o
n-best-statg 12.2 indiep. dependent dopndent
avg-all((_:oustlc 1;1 avg-acoustic | 12.4 11.1 (-10.5%)| 10.0 (-19.4%)
Speadng e : speaking-rate| 15.1 15.1 (-0.0%)| 14.2 (- 6.0%)

5.2 Confidence measure combination

In a follow-up experiment, we try to combine the confidence meaSecond, we replace two confidence measures in the speaker-
sures such that the resulting classification error rate is lower thamdependent measure vect®, = (z1,...,z5) to obtain a



’ ’ !
new feature vectoX . where thex, = z4 — O, andz; =

Table 5: The classification error rate [%)] fd_l(i3 with multilayer

s — Off;j are word-specific as explained above. The same prarchitecture. Backpropagation = BP.

cedure is applied tX,, to obtainX;O. Acting on these vectors
which contain our raw confidence measures, we now use projec-
tion on the LDA's first eigenvector, the neural network trained
with Bayes only, and trained with Bayes and Gardner-Derrida
(GD) error functions, to find the best technique for confidence
measure combination. The classification results with the word-
specific feature vecto)_(’5 andx;0 are given in Table 4.

Table 4: The classification error rate [%] for combined confi-

o Error rate
Combination Training set| Test set
LDA + (Bayes + GD) 6.6 6.7
LDA + BP 10,000 steps 5.2 7.5
LDA + BP 100,000 steps 0.9 10.2
LDA + BP 1,000,000 steps 0.8 12.1

dence measures including word-specific confidence measures.plus data-dependent measures, and BayesGdudner—Derrida
plus data-dependent confidence measures continuously improves

A Error rate
Combination ‘lineard=5 | ‘nonlinear'd=20
LDA (d), 1st ev. 8.2 7.5
Bayes (d+1)J 7.0 7.3
(Bayes + GD) (d+1)J 6.7 6.6

the classification error rate. Additionally, we found that the results
of our one-layer Bayesian perceptron generalize better compared
to a non-linear backpropagation network.
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