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ABSTRACT

In this paper we study various decorrelation methods
for the features used in speech recognition and we com-
pare the performance of each one by running several tests
with a speech database. First of all we study the Prin-
cipal Components Analysis (PCA). PCA extracts the di-
mensions along which the data vary the most, and thus it
allows us to reduce the dimension of the data point with-
out significant loss of performance. The second transform
we study is the Discrete Cosine Transform (DCT). As it
will be shown, it is an approximation of the PCA analysis.
By applying this transform to FBE parameters we obtain
the MFCC coefficients. A further step is taken with the
Linear Discriminant Analysis (LDA), which, not only re-
duces the dimensionality of the problem, but also discrimi-
nates among classes to reduce the confusion error. The last
method we study is Frequency Filtering (FF). This method
consists of a linear filtering of the frequency sequence of the
log FBE that both decorrelates and equalizes the variance
of the coefficients.

1. INTRODUCTION

This work focuses on comparing various methods to decor-
relate the set of parameters used in speech recognition.

In speech recognition, filter bank energies (FBE) are
widely used because of their clear physical meaning. How-
ever, before use them as the parameter set for the Viterbi
decoder, it is very useful to decorrelate and to compress
them. The decorrelation process allows us to use diagonal
covariance matrix, simplifying the system and reducing the
number of parameters to train without loss of performance.
In the case of the reduction of parameters, we find a trade-
off between number of parameters and performance. On
one side, the greater the number of parameters the greater
the degrees of freedom the model will have to model the
acoustic event, but on the other side, as more parameters
we take, the system will become more complex and there
will be more variance in the estimates of the probabilities.

During the past decade, much effort has been done to
find transformations to reduce the number of parameters
as well as to decorrelate them at the same time that we
increase the performance of the system.

In this paper, we make a comparative study of some of
these methods, showing their performance in several situ-
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ations. We also show the advantage of introducing some
sort of discrimination at the same time we decorrelate the
feature vectors. As it will be shown in the comparative
results, discriminative approaches achieve a significant er-
ror rate reduction maintaining the same (or little more)
computational cost.

2. BACKGROUND THEORY

In this section we briefly review the theory that involves
some the methods used to incorrelate and to reduce the
dimension of the speech parameters.

2.1. Filter Bank Analysis

Nowadays, the bank-of-filters front-end processor is used
extensively. The sampled speech signal is passed through
a bank of @ bandpass filters whose center frequency is dis-
tributed uniformly along a logarithmic frequency. This dis-
tribution tries to emulate the cochlear location of the hair
cell in the human auditory system [8]. Since the aim of
this analysis is to quantify the energy of each band of the
spectrum of the signal, each of the bandpass signals are
usually passed through a nonlinearity.

2.2.

Principal Components Analysis (PCA) is a useful tech-
nique often used in statistical analysis of data. PCA is
based on the calculation of the major directions of vari-
ations of a set of data points in a high dimension space.
PCA will extract the direction of the greatest variance,
assuming that the less variation of the data, the less in-
formation it carries. PCA has some interesting properties
that are useful for dimension reduction. Among them, we
can highlight that principal components are mutually or-
thogonal and the largest principal value is the direction of
greatest variance. We obtain the projection matrix from
the covariance matrix C, defined as

Principal Components Analysis
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where N is the number of frames used in training, x, is the
nth frame, and p is the mean of the frames
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The directions of the principal components are the eigen-
vectors with greatest eigenvalues of the covariance matrix



Figure 1. First components of the DCT (solid line),
PCA (dashed line) and LDA (dotted line)
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Figure 2. Energy of the signal versus the dimen-
sion of the projected space for PCA (solid line) and
LDA (dashed line)

C. Since the covariance matrix is known to be real and
symmetric, the eigenvectors are guaranteed to be orthogo-
nal.

Examining 1 we can see that PCA analysis is very similar
to the KL transform.

2.3. Melcepstrum Analysis

Mel-Frequency Cepstral Analysis (used to obtain the
MFCC coefficients) is one the most used analysis tech-
nique in speech recognition for its simplicity and good per-
formance. MFCC coefficients are obtained from the log
filter-bank amplitudes (the filters are equally spaced along
the mel-scale) using the Discrete Cosine Transform (DCT).
DCT is defined as

1 < i
ci = \/mej cos (6 (j— 0.5)) (3)

As we can see in Figure 1, DCT is just an approximation
of the optimal transform, i.e. the PCA transform.

2.4.

In section 2.2. we described an statistical method used to
reduce the dimension of the space of interest. Through
this section we will show a method that, not only reduces
the dimension of the space, but also discriminates among
classes. In this approach, the problem of finding a linear
transformation is formulated in terms of a problem of min-
imizing a criterion of class separability function [1].

In LDA analysis, some strong assumptions are made.
The first assumption is that all classes share a common
within-class covariance (for a global LDA implementation).
LDA also assumes a single Gaussian distribution per class,
however, the use of multiple mixture densities shows better
results [6]. We define the between-class matrix as

Linear Discriminant Analysis
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and the within-class matrix as

WSS = % Z Z (€hn — i) (€hn — )" (5)

k=1 n=1

where N is the total number of training frames, K is the
number of the classes to separate, nj is the number of
training patterns of the kth class, xy, is the nth training
pattern of the kth class and
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are the mean vector of each class and the global mean
vector respectively.

To find the transformation matrix we orthogonalise the
WSS matrix by rotating it so the features become inde-
pendent. By scaling after the rotation, the distribution of
WSS in the new space can be made to be the identity
matrix. Then, the BSS matrix is projected into this new
space and an eigenanalysis can be made to generate an-
other rotation so that WSS and BSS are projected into
the same space. It can be shown [6] that this sequence of
rotations and scalings is equivalent to find the eigenvectors
of the matrix WSS™'BSS.

2.5.

In spite of the great performance of the MFCC parame-
ters, they have at least three drawbacks. First of all, they
do not have a clear physical meaning, second, they require
a linear transformation from the log FBE, and third, in
CDHMM with diagonal covariance matrices, applying a
shaping window to the cepstral coefficients has an effect
only on its length. In order to overcome those disadvan-
tages, we can use the Frequency Filtering Analysis (FF)
[7].

By using FF not only we decorrelate the parameters but
in addition we approximately equalize the variance of the
cepstral coefficients up to a given quefrency index. As it
was shown by experimental results, a simple low-order FIR

Frequency Filtering Analysis



filter suffices to improve significantly the performance of
the recognition system. Choosing @, the number of chan-
nels to use, appropriately, we can obtain the filter that
equalizes the variance by a least-squares modeling.

After a few tests over several databases, it was seen that
a filter that performs very well in a wide range of environ-
ments and values of @) is

h(z)=2z—2"" (7)

Although this filter performs quite well in several environ-
ments, it is possible to obtain another filter adapted for
each situation. Omnce we have decided the working envi-
ronment for the recognition system, we can estimate the
parameters of the new filter in order to obtain the opti-
mum filter in terms of variance equalization for that envi-
ronment.

3. EXPERIMENTAL RESULTS

The experiments described in this section were carried out
using the TIMIT database [2]. The recognizer was used
as a phonetic classifier without any grammar. The front
end for the feature extraction was a filter-bank analysis,
computed from a fast Fourier Transform (FFT), followed
by a subsequent decorrelation and in some cases a discrim-
inative process (PCA, DCT, LDA or FF).

All experiments are carried out using a window size of
20ms with a displacement of 10ms. The HMMs used have
a left-to-right topology and three emitting states. The 48
classes (associated to HMMSs) are the phone set defined in
[5].
3.1.

The first experiment tries to show the performance of each
parameter transformation, without taking into account any
other information.

Results without temporal information
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Figure 3. Accuracy using the projected coefficients
without extra information

In figure 3 we can see the results using vectors of 16
coefficients. As it is shown, using FBANK parameters as
the data set for the recognizer result in a very poor perfor-
mance of the system. This is, in part, due to the correlation

of its parameters. We can also see the reduction in accu-
racy produced by the approximation of the PCA analysis
by the Discrete Cosine Transform (PCA vs MFCC).
From this first experiment we can conclude that the two
discriminative approaches (FF and LDA) clearly outper-
form the non-discriminative techniques (MFCC and PCA).

3.2. Results using derivatives and energy infor-

mation

One of the drawbacks of the HMM systems are the lack
of the history information of the system, that is, the inde-
pendence assumption between two frames of speech data.
This is a consequence of the use of first order HMMs. With
the purpose of bypass this drawback, we can add temporal
information directly to the system as a part of the data
set.

In the second block of the experiments we carried out,
we use the temporal information in the form of derivatives
of the frames (first and second order).

The results are divided into non-discriminative and dis-
criminative techniques, in order to see, not only the effect
of the decorrelation of the parameters, but also the dis-
criminative effect of some of the approaches.

In figure 4 are shown the results for the non-
discriminative techniques, i.e., MFCC and PCA.
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Figure 4. Accuracy using the projected coeffi-
cients, first and second derivatives and energy for

non-discriminative techniques

Here we can see another advantage of the PCA analy-
sis. With PCA, it is possible to reduce the dimension of a
space even if it is non-homogeneous. By non-homogeneous
we mean that a vector is composed by the FBANK pa-
rameters, its first and second derivatives, the energy of the
speech frame and its derivatives. We calculated the PCA
projection space for this global vector and we find the di-
rections of maximum information. Then we can reduce the
dimension of the vector maintaining the error rate. The re-
sults shown in figure 4 are for MFCC with 51 coefficients
(16 for the MFCC, 16 for each of its derivatives, 1 for the
energy and 1 more for each derivative), and for PCA with
16, 32 and 51 coefficients. As we can see, PCA with 32
coefficients outperforms MFCC with 51 coefficients.



In figure 5 we can see the accuracy of the discriminative
approaches discussed in this paper.

LDA has the same ability we explained for PCA to deal
with non-homogeneous vectors of mixed parameters and
its derivatives. Again we tested the technique with full
dimension and with a reduced space. For LDA we can see
that we can reduce the dimension of the projected space
more than we did for PCA and still outperform MFCC
analysis.
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Figure 5. Accuracy using the projected coeffi-
cients, first and second derivatives and energy for
discriminative techniques

4. CONCLUSIONS

In this paper we presented several techniques used in
speech recognition to decorrelate the feature vector ob-
tained from a filter-bank analysis. It was also shown that
some of these approaches, not only decorrelates the param-
eters, but also perform some sort of decorrelation among
classes, and thus reducing the error rate.

We also shown some of the advantages of using PCA and
LDA analysis instead of DCT, like the possibility of using
non-homogeneous vectors for the reduction of the working
dimension.

Finally, we also demonstrated the power of the
frequency-filtering analysis, which offers a significant re-
duction of the error rate while maintaining a low compu-
tational cost.
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