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ABSTRACT

In this paper we study various decorrelation methods

for the features used in speech recognition and we com-

pare the performance of each one by running several tests

with a speech database. First of all we study the Prin-

cipal Components Analysis (PCA). PCA extracts the di-

mensions along which the data vary the most, and thus it

allows us to reduce the dimension of the data point with-

out signi�cant loss of performance. The second transform

we study is the Discrete Cosine Transform (DCT). As it

will be shown, it is an approximation of the PCA analysis.

By applying this transform to FBE parameters we obtain

the MFCC coe�cients. A further step is taken with the

Linear Discriminant Analysis (LDA), which, not only re-

duces the dimensionality of the problem, but also discrimi-

nates among classes to reduce the confusion error. The last

method we study is Frequency Filtering (FF). This method

consists of a linear �ltering of the frequency sequence of the

log FBE that both decorrelates and equalizes the variance

of the coe�cients.

1. INTRODUCTION

This work focuses on comparing various methods to decor-

relate the set of parameters used in speech recognition.

In speech recognition, �lter bank energies (FBE) are

widely used because of their clear physical meaning. How-

ever, before use them as the parameter set for the Viterbi

decoder, it is very useful to decorrelate and to compress

them. The decorrelation process allows us to use diagonal

covariance matrix, simplifying the system and reducing the

number of parameters to train without loss of performance.

In the case of the reduction of parameters, we �nd a trade-

o� between number of parameters and performance. On

one side, the greater the number of parameters the greater

the degrees of freedom the model will have to model the

acoustic event, but on the other side, as more parameters

we take, the system will become more complex and there

will be more variance in the estimates of the probabilities.

During the past decade, much e�ort has been done to

�nd transformations to reduce the number of parameters

as well as to decorrelate them at the same time that we

increase the performance of the system.

In this paper, we make a comparative study of some of

these methods, showing their performance in several situ-
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ations. We also show the advantage of introducing some

sort of discrimination at the same time we decorrelate the

feature vectors. As it will be shown in the comparative

results, discriminative approaches achieve a signi�cant er-

ror rate reduction maintaining the same (or little more)

computational cost.

2. BACKGROUND THEORY

In this section we brie
y review the theory that involves

some the methods used to incorrelate and to reduce the

dimension of the speech parameters.

2.1. Filter Bank Analysis

Nowadays, the bank-of-�lters front-end processor is used

extensively. The sampled speech signal is passed through

a bank of Q bandpass �lters whose center frequency is dis-

tributed uniformly along a logarithmic frequency. This dis-

tribution tries to emulate the cochlear location of the hair

cell in the human auditory system [8]. Since the aim of

this analysis is to quantify the energy of each band of the

spectrum of the signal, each of the bandpass signals are

usually passed through a nonlinearity.

2.2. Principal Components Analysis

Principal Components Analysis (PCA) is a useful tech-

nique often used in statistical analysis of data. PCA is

based on the calculation of the major directions of vari-

ations of a set of data points in a high dimension space.

PCA will extract the direction of the greatest variance,

assuming that the less variation of the data, the less in-

formation it carries. PCA has some interesting properties

that are useful for dimension reduction. Among them, we

can highlight that principal components are mutually or-

thogonal and the largest principal value is the direction of

greatest variance. We obtain the projection matrix from

the covariance matrix C, de�ned as

C =
1

N

NX
n=1

(xn � �) (xn � �)
T

(1)

where N is the number of frames used in training, xn is the

nth frame, and � is the mean of the frames

� =
1

N

NX
n=1

xn (2)

The directions of the principal components are the eigen-

vectors with greatest eigenvalues of the covariance matrix
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Figure 1. First components of the DCT (solid line),
PCA (dashed line) and LDA (dotted line)

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

N. of coeficients

  E
ne

rg
y

Figure 2. Energy of the signal versus the dimen-
sion of the projected space for PCA (solid line) and
LDA (dashed line)

C. Since the covariance matrix is known to be real and

symmetric, the eigenvectors are guaranteed to be orthogo-

nal.

Examining 1 we can see that PCA analysis is very similar

to the KL transform.

2.3. Melcepstrum Analysis

Mel-Frequency Cepstral Analysis (used to obtain the

MFCC coe�cients) is one the most used analysis tech-

nique in speech recognition for its simplicity and good per-

formance. MFCC coe�cients are obtained from the log

�lter-bank amplitudes (the �lters are equally spaced along

the mel-scale) using the Discrete Cosine Transform (DCT).

DCT is de�ned as

ci =

r
1

Q

QX
j=1

mj cos

�
�i

Q
(j � 0:5)

�
(3)

As we can see in Figure 1, DCT is just an approximation

of the optimal transform, i.e. the PCA transform.

2.4. Linear Discriminant Analysis

In section 2.2. we described an statistical method used to

reduce the dimension of the space of interest. Through

this section we will show a method that, not only reduces

the dimension of the space, but also discriminates among

classes. In this approach, the problem of �nding a linear

transformation is formulated in terms of a problem of min-

imizing a criterion of class separability function [1].

In LDA analysis, some strong assumptions are made.

The �rst assumption is that all classes share a common

within-class covariance (for a global LDA implementation).

LDA also assumes a single Gaussian distribution per class,

however, the use of multiple mixture densities shows better

results [6]. We de�ne the between-class matrix as

BSS =
1

N

KX
k=1

nk (�k � �) (�k � �)
T

(4)

and the within-class matrix as

WSS =
1

N

KX
k=1

nkX
n=1

(xkn � �k) (xkn � �k)
T

(5)

where N is the total number of training frames, K is the

number of the classes to separate, nk is the number of

training patterns of the kth class, xkn is the nth training

pattern of the kth class and

�k =
1

nk

nkX
n=1

xkn � =
1

N

KX
k=1

nk�k (6)

are the mean vector of each class and the global mean

vector respectively.

To �nd the transformation matrix we orthogonalise the

WSS matrix by rotating it so the features become inde-

pendent. By scaling after the rotation, the distribution of

WSS in the new space can be made to be the identity

matrix. Then, the BSS matrix is projected into this new

space and an eigenanalysis can be made to generate an-

other rotation so that WSS and BSS are projected into

the same space. It can be shown [6] that this sequence of

rotations and scalings is equivalent to �nd the eigenvectors

of the matrix WSS�1BSS.

2.5. Frequency Filtering Analysis

In spite of the great performance of the MFCC parame-

ters, they have at least three drawbacks. First of all, they

do not have a clear physical meaning, second, they require

a linear transformation from the log FBE, and third, in

CDHMM with diagonal covariance matrices, applying a

shaping window to the cepstral coe�cients has an e�ect

only on its length. In order to overcome those disadvan-

tages, we can use the Frequency Filtering Analysis (FF)

[7].

By using FF not only we decorrelate the parameters but

in addition we approximately equalize the variance of the

cepstral coe�cients up to a given quefrency index. As it

was shown by experimental results, a simple low-order FIR



�lter su�ces to improve signi�cantly the performance of

the recognition system. Choosing Q, the number of chan-

nels to use, appropriately, we can obtain the �lter that

equalizes the variance by a least-squares modeling.

After a few tests over several databases, it was seen that

a �lter that performs very well in a wide range of environ-

ments and values of Q is

h(z) = z � z
�1

(7)

Although this �lter performs quite well in several environ-

ments, it is possible to obtain another �lter adapted for

each situation. Once we have decided the working envi-

ronment for the recognition system, we can estimate the

parameters of the new �lter in order to obtain the opti-

mum �lter in terms of variance equalization for that envi-

ronment.

3. EXPERIMENTAL RESULTS

The experiments described in this section were carried out

using the TIMIT database [2]. The recognizer was used

as a phonetic classi�er without any grammar. The front

end for the feature extraction was a �lter-bank analysis,

computed from a fast Fourier Transform (FFT), followed

by a subsequent decorrelation and in some cases a discrim-

inative process (PCA, DCT, LDA or FF).

All experiments are carried out using a window size of

20ms with a displacement of 10ms. The HMMs used have

a left-to-right topology and three emitting states. The 48

classes (associated to HMMs) are the phone set de�ned in

[5].

3.1. Results without temporal information

The �rst experiment tries to show the performance of each

parameter transformation, without taking into account any

other information.
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Figure 3. Accuracy using the projected coe�cients
without extra information

In �gure 3 we can see the results using vectors of 16

coe�cients. As it is shown, using FBANK parameters as

the data set for the recognizer result in a very poor perfor-

mance of the system. This is, in part, due to the correlation

of its parameters. We can also see the reduction in accu-

racy produced by the approximation of the PCA analysis

by the Discrete Cosine Transform (PCA vs MFCC).

From this �rst experiment we can conclude that the two

discriminative approaches (FF and LDA) clearly outper-

form the non-discriminative techniques (MFCC and PCA).

3.2. Results using derivatives and energy infor-
mation

One of the drawbacks of the HMM systems are the lack

of the history information of the system, that is, the inde-

pendence assumption between two frames of speech data.

This is a consequence of the use of �rst order HMMs. With

the purpose of bypass this drawback, we can add temporal

information directly to the system as a part of the data

set.

In the second block of the experiments we carried out,

we use the temporal information in the form of derivatives

of the frames (�rst and second order).

The results are divided into non-discriminative and dis-

criminative techniques, in order to see, not only the e�ect

of the decorrelation of the parameters, but also the dis-

criminative e�ect of some of the approaches.

In �gure 4 are shown the results for the non-

discriminative techniques, i.e., MFCC and PCA.
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Figure 4. Accuracy using the projected coe�-
cients, �rst and second derivatives and energy for
non-discriminative techniques

Here we can see another advantage of the PCA analy-

sis. With PCA, it is possible to reduce the dimension of a

space even if it is non-homogeneous. By non-homogeneous

we mean that a vector is composed by the FBANK pa-

rameters, its �rst and second derivatives, the energy of the

speech frame and its derivatives. We calculated the PCA

projection space for this global vector and we �nd the di-

rections of maximum information. Then we can reduce the

dimension of the vector maintaining the error rate. The re-

sults shown in �gure 4 are for MFCC with 51 coe�cients

(16 for the MFCC, 16 for each of its derivatives, 1 for the

energy and 1 more for each derivative), and for PCA with

16, 32 and 51 coe�cients. As we can see, PCA with 32

coe�cients outperforms MFCC with 51 coe�cients.



In �gure 5 we can see the accuracy of the discriminative

approaches discussed in this paper.

LDA has the same ability we explained for PCA to deal

with non-homogeneous vectors of mixed parameters and

its derivatives. Again we tested the technique with full

dimension and with a reduced space. For LDA we can see

that we can reduce the dimension of the projected space

more than we did for PCA and still outperform MFCC

analysis.
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Figure 5. Accuracy using the projected coe�-
cients, �rst and second derivatives and energy for
discriminative techniques

4. CONCLUSIONS

In this paper we presented several techniques used in

speech recognition to decorrelate the feature vector ob-

tained from a �lter-bank analysis. It was also shown that

some of these approaches, not only decorrelates the param-

eters, but also perform some sort of decorrelation among

classes, and thus reducing the error rate.

We also shown some of the advantages of using PCA and

LDA analysis instead of DCT, like the possibility of using

non-homogeneous vectors for the reduction of the working

dimension.

Finally, we also demonstrated the power of the

frequency-�ltering analysis, which o�ers a signi�cant re-

duction of the error rate while maintaining a low compu-

tational cost.
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