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to a floor vector where each cponent has its own floor value.
ABSTRACT The second dimension iBne (represented by a state sequence
) ) in a left-right HMM) where a unique floor can be shared by
The problem of how to train variance parameters on scarce dgigiance vectors within all states in all models, ranging to each
is addressed in the context of text-dependent, HMM-baseggie having its own floor. The third dimensioridature space
automatic speaker verification. Three variations of varianCgnere different parts of the feature space may have their own

flooring is explored as a means to prevent over-fitting. With thgo.  ap example of the latter is when each Gaussian term
best performing one, the floor to a variance vector of a cliegfinin a composite pdf has its own floor value.

model is proportional to the corresponding variance vector in a

non-client multi-speaker model. It is also found that adaptin§n alternative modification to the EM algorithm is to keep
the means and mixture weights from the non-client model whikariances fixed while updating means and transition
keeping variances constant works comparably to variangsobabilities [2]. In the context of speaker verification where a
f|00ring and is much Simp|er_ Comparisons are made on thr@@n-C“ent model is often used for likelihood normalization, the

large telephone quality corpora. variances of the client model can be copied from the non-client
model. A non-client model is often trained on a lot of data from
1. INTRODUCTION many speakers and all parameters of the model can be reliably

) L ) o estimated with the original EM-algorithm. If non-client model
In practical applications, Automatic Speaker Verification (ASV),ariances are used systematically in client models, client
systems are generally u_sed in contexts where_very _few clietiances becomelient-independent
enroliment data are available. One problem with using small
training data is the risk of over-training, that is, parameters #f this paper we compare several variations of the two principle
the client model are over-fitted to the particular training datdnodifications to the EM-algorithm mentioned above. The
Especially variance parameters are susceptible to over-fittingCgmparison is made on three separate telephone quality
variance estimated from only a few data points can be vefiatabases: Gandalf [5], SESP [6] and Polycost [7]. The
small and might not be representative of the underlyinfecognition tasks are slightly different, but are all some form of
distribution of the data source. text-dependent task using digits.

The maximum likelihood (ML) principle is often used inFrom the variety of possible variance flooring methods we try
training parameters of continuous density hidden Markothree variants with gradually increasing resolution: model-
models (HMM). The most general implementation of thaflependent, state-dependent and mixture component-dependent
principle (the EM-algorithm) consists in optimizing all Vector floors. The various floor vectors are computed as an
parameters of the HMM, including means and variances of staigpirical constant times a basis vector, like in [1]. The basis
pdfs. With sparse training data from a client, speaker variancégctor is derived from speech data or directly from a multi-
tend to be over-trained [1]. speaker model.

One way to modify the EM-algorithm is to impose a lowerSince the variance flooring technique involves the setting of an
bound on variance parameters,variance floor With this empirical constant, its usefulness depends on to which extent
method any given variance value will have its correspondiri§i€ choice of an optimal scaling factor will generalize from
floor value as a lower bound during iterations of EM. A newdevelopment data to new evaluation data. In this paper we
problem is then how to compute this floor value. Within thélescribe a series of experiments to investigate on such
CAVE-project a method to compute variance floors igeneralization properties.

suggested [1]. With this method, all variance vectors of all
HMMs in a speaker model share one flooring vector. This 2. SYSTEM DESCRIPTION

vector is estimated as the variance over some calibration d@ﬁ‘ext-prompted ASV system based on word-level HMMs [3] is
set multiplied by a constant variance-flooring factor. Theyiit on a generic platform for speaker verification systems
cal_lbratlon Fiata set can be for instance the same data useq.ifled GIVES (Generablentity Vaification System). The input
train non-client models. signal is pre-emphasized and divided into one 25.6 ms frame

Variance flooring can be implemented with several levels ¢fach 10 ms and a Hammingnabw is applied. Foeach frame
“resolution” in up to three “dimensions”. The first dimension is2 12-element cepstral vector and an energy term is computed,
the vector indexwhere resolution can range from a scalar floognd those are appended with first and second order deltas.
where all components of a variance vector share a floor valfeepstral mean subtraction is applied to the 13 static



coefficients. In most experiments MFCC ceptral vectors arhe HMMs are implemented with HTK [4] with minor
used. They are computed from a 24-channel, FFT-based, meledifications to allow for training models on sparse data. The
warped, log-amplitude filterbank between 300-3400 Hparameters of HMMs in multi-speaker models are estimated
followed by a cosine transform. The energy term is the O'ttvith EM-algorithm, with a crude fixed floor of 0.01 for all
cepstral coefficient. In the end of section 4 the MFCCs are alsariance parameters. Initial parameters for a single-Gaussian
replaced with LPCCs, where parameters from a 16-pole linearodel is first computed from Viterbi alignment of training data
prediction filter are computed with the autocorrelation methodnd are further trained with Baum-Welch re-estimation. The
and are transformed to 12-element cepstrum. The energy ternGiaussian terms are then split in two and the resulting mixture-
then the raw log-energy within each frame of samplesGaussian is again re-estimated. This procedure is repeated until
normalized within each utterance to have constant maximuthere are eight Gaussians per state. This procedure is done
amplitude for every utterance. All cepstral vectors are liftered tadependently for each HMM in the client model. The system
equalize the component variances. Total vector dimension is 3%pends on explicit segmentation of the inp&es into words
puring both enrollment and test, the segmentation being

A speaker model has 10 word-level left-to-right HMMs, one foproduced by a speech recognizer (see Table 2),

each digit. Each HMM have two states g#roneme and a
mixture of eight Gaussians per state. A non-client multi-speaker

model is used for log-likelihood normalization on a per-word 3. DATABASE AND PROTOCOL

basis. Each word score is further divided by the number dfhree database [5,6,7] have been used in the tests. One of them,
frames in the word segment, and finally averaged over words @andalf, has been divided into two separate parts which are

the utterance. Non-client model HMMs are also left-to-right andsed as if they were two different databases in this paper. Table

have the same dimensions as the client HMMs. 2 summarizes the main features of the databases. They are all

The non-client model is selected individually &ach client and digital telephony databases recorded through ISDN. The

each word during enrollment as one of two competing gendé?ptat'on used for enroliment setsNsMih-T, yvhereN IS number
dependent multi-speaker models, with agriori information of sessionsM number of handsets, aridis the approximate

on the gender of the client. When training the client model, ﬂ{gffective) amoun.t of sech in minute§. The. norm for the
best matching multi-speaker model is copied as a seed for ount of spech is Gandalf where 25 five-digit sequences are

client model. Depending on the variance estimation method ?étlmated to one minute of speech (one digit is then ¥ second).

be used, client model training proceeds in one of the followingome additional facts not included in the table: Polycost test
ways: was baseline experiment 2 as defined in [6]; enroliment set on
SESP is referred to as G in previous literature [1]; segmentation
into words is made with a speechagnizer operating in forced
alignment mode given the prompted text.

a) Client-independent variancesthe client model
means and mixture weights are re-estimated from
enrollment data while variances are kept constant.

b) Variance flooring: client model means, mixture 4. EXPERIMENTS AND RESULTS
weights and variances are re-estimated from
enrollment data. Variances are floored with one of
three alternative methods.

Results are presented in terms of equal-error-rates (EERs) based
on same-sex impostor attempts and a client-independent
posteriori threshold. In each figure, the left-most data points,
Transition probabilities are kept constant in both cases. Thabelled ‘fixv’, indicate client-independent variances. The
three flooring methods are implemented as follows. Basie€maining data points show error rate as a function of the
vectors with the same resolution as the flooring vectors aggaling factor of some variance flooring method. This way,
derived either directly from speech data or fromam-client performance of client-independent variances and variance
model. Each floor vector is then set proportional to th#ooring can be compared within each figure.

corresponding basis vector. The scaling constant is unique fefy, re 1 compares the three different variance flooring methods

the entire system. The basis vectors are derived in one of g o three databases. It can be seen that the higher resolution
three following ways: in flooring, the less critical is the choice of scaling factor, since
« model-dependent floorthe basis-vector for word the minima in those curves are much wider and the position of
model w is the variance of all vectors within  the minima are closer to each other than for low resolution

segments identified as this word flooring. To investigate in detail on the lowest achieved error
rates, Table 1 shows the average improvement when going from
* state-dependent floothe basis-vector for a stase client-independent variances to each of the three variance

in word model w is computed as a linear  flooring methods. Two cases are shown: First, the scaling factor
combination of variance parameters of the mixture has been chosen as theposteriori best one for each of the
Gaussian in statin a non-client model databases. Second, a global scaling factor for all databases was
chosen as tha posterioribest one for Gandalf development set.
This corresponds to using that database as development data
and testing the resulting system on the other three databases.
There is a clear trend that higher resolution in variance flooring
is better than lower, and only for the mixture component-

e mixture component-dependent floothe basis-
vector for a mixture componenin states of model
w is the variance of mixture-componerit the non-
client model.



dependent floors is the average error-rate lower than wilmodel-dependent variance floor:
client-independent variances.
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Since the variance flooring method is applied to avoid unde sesp - A~ - poly
training of variances on sparse training data, it can be expeci
that for a given recognition task and database, the need |
flooring would systematically decrease with increased size ¢ o
the enrolliment set. The more training data the more shou <
variances need to be floored. Hence, one can expect the optir
scale factor in variance flooring to decrease with large
enrollment sets. Such a trend is clearly visible in Figure 2 whe
we compare enrollment sizes from 0.3 to 1 minutes (3 to 1
training examples per digit).
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One could further expect that with larger enroliment sets
variance flooring should be better relative to client-independet

scale factor (%)

1s1h-03 1s1h-05 b) state-dependent variance floor:

1
1s1h-1.0 ;\a
- o
10 m
S x
o 3
i o - N LB
w E A A, A
X 8 Acp-A-A
UI') 7777777777777777777777 l L) L) L) L) L) L) L) L) L) L) L) L) L) L]
[} A
2 2 8 ¢ 8 8 8 g ¢
© — — —
0 1 scale factor (%)
L) L) L) L) L) L) L) L) L) L) L) L) L) L]
S . .
g 8« ¥ 8 8 8 & § c) mixture component-dependent variance floor:
scale factor (%) Alo‘:::::::::::::::::::::::
S oIl TITIIIoIiIno
. . . . 8/ 777777777777777777777
Figure 2. Cgmparlson between different enrollment set sizes > & A SN ;
and 1-session, 1-handset (1s1h) enroliment on Gandalf ﬂ ,,,,,,,,,,,,,,,,,,,,,
(development set). Variance floor is state-dependentandthe  x - - - ------ - -7 - R e e e
fixv-points shows results for client-independent variances. ‘g ,,,,,,,,,,,,,,,,,,,,,,,
S A A-p-a-D
3
1 L) L) L) L) L) L) L) L) L) L) L) L) L) L]
>
—o—mfcc —e—Ipcc & Q Q 2 2 § a g

scale factor (%)

=
o
)

Figure 1. Comparison between same-sex EERs with fixed,
client-independent variances (fixv) and with the three
alternative flooring methods for the three databases: a) model-
dependent floor, b) state-dependent floor and ¢) mixture
component-dependent floor.

Same-Sex EER (%)

variances than with smaller enroliment sets. There is no clear
evidence for this in the figure.
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L]
§. Finally we compared the MFCC-based features we used so far
scale factor (%) with LPCC-based features. Figure 3 shows error-rates for state-
Figure 3. Comparison between MFCC-based and LPCC-baseodependent floors on the Gandalf develqpment S?t' on othgr
) o . databases too we observe that the optimal scaling factor is
features. Each cyrve con_talns resul.ts W'th_ fixed, clle_nt- ) different for the two parameterizations and it seems that a
independent variances (fixv) and with variance flooring with scaling factor optimized for one parameterization may not be
state-dependeriloors. Experiment is done on Gandalf reusable for another.

(development set).



The results open new tracks in the search for improved
procedures and models in estimating client variances in the
context of scarce enrollment data.

6. REFERENCES

Flooring level individual scale | global scale factor
factor
Model -8% -11% (0.60)
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Mix-comp 3% 3% (1.10)
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scale factor (shown in parentheses) was chosen from the
Gandalf development set.

5. CONCLUSIONS

We have compared two modifications of the EM-algorithm for

HMM training on sparse data in the application of text- 5

dependent speaker verification. The first is to copy variances
from a non-client multi-speaker model and then keep them
fixed while the EM-algorithm is applied to means and mixture
weights. In the second method, variances are trained but they
are floored after each iteration of EM. Three variants of the
variance flooring method with different resolution were tried
and it was found that the one with the highest resolution, i.e.

when the floor for the variance vector of a given Gaussian is 5,

proportional to the corresponding variance vector in the non-
client model, was the best performing one. The optimal scaling
factor for this kind of variance flooring was found to be around

1.10, which means that all variances are actually larger than
with the client-independent variances.

Compared to the best performing variance flooring method,
speaker-independent variances seem to work comparably
without the need to estimate an empirical scaling factor for a
variance floor. This trend is observed on three different
databases, with two distinct parameterizations.

These results consolidate similar observations made in [2] and
at recent NIST evaluations in text-independent ASV [8] that

client models trained as adaptation of multi-speaker models
with keeping covariance matrices constant brings a significant
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advantage, especially in the case of very scarce enrollment data. 1 April, 1998.
Test database Gandalf Polycost SESP
Set dev | eval
language Swedish English Dutch
Task native speakers 100 % ~15% 100 %
enroliment 1s1h-1.0 2s1h-0.6 4s2h-0.9
password 2 x 4 digits 10 digits 14 digits
clients 22118 24 /18 61/49 21/20
Test impostors 23/18 58 /32 61/49 21/20
population total number of true-speaker tests 927 886 664 1658
false-speaker tests (same-sex) 790 1926 6012 763
off-line database SpeechDat Polycost Polyphonge
Non-client speakers 399 /561 11/11 24 | 24
population total time (approx.) 5h 0.5h 0.3h
examples per digit and speaker 4 19 5
System speech recognizer for segmentatign HTK Nuancq Phicog

Table 2. Summary of main features of the three databases and their protocols. Number of speakers are given as #male/#female.

Figure 2 the enrollment set is varied between 0.3-1 minute |I€fignumber of handsets is an estimate.



