
NOZOMI { A FAST, MEMORY-EFFICIENT STACK DECODER FOR LVCSR

Mike Schuster

ATR, Interpreting Telecommunications Research Lab.

2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-0288

gustl@itl.atr.co.jp http://www.itl.atr.co.jp/

ABSTRACT

This paper describes some of the implementation details

of the \Nozomi" 1 stack decoder for LVCSR. The decoder

was tested on a Japanese Newspaper Dictation Task us-

ing a 5000 word vocabulary. Using continuous density

acoustic models with 2000 and 3000 states trained on the

JNAS/ASJ corpora and a 3-gram LM trained on the RWC

text corpus, both models provided by the IPA group [7],

it was possible to reach more than 95% word accuracy on

the standard test set. With computationally cheap acous-

tic models we could achieve around 89% accuracy in nearly

realtime on a 300 Mhz Pentium II. Using a disk-based LM

the memory usage could be optimized to 4 MB in total.

1. INTRODUCTION

LVCSR is currently limited to workstations and fast high-

end laptops with a lot of memory. To make LVCSR work on

PDAs, cellular phones, user-interfaces, wrist watches etc.,

it is necessary �nd time- and memory-e�cient algorithms.

The goal for implementation of any search engine must be

to minimize time and memory requirements as well as
the overall complexity of the system while maximizing

its 
exibility using all available knowledge sources (pro-

nunciation dictionary, N-gram LM etc.) to search for the

desired output.

There are several approaches to decoding, which can be

distinguished by their basic search strategy: a) the time-

synchronous transition network decoders and the usually

time-asynchronous stack decoders. Stack decoders [3, 5]

can be de�ned as decoders that use during decoding some

kind of a stack of partial sentence hypotheses each consist-

ing of a certain number of words. In general the partial hy-

potheses on a stack are expanded by complete words time-

synchronously using the pronunciation dictionary to create

new partial hypotheses which are inserted into other stacks.

When all stacks but the last (result stack) are empty, the

result stack will contain the �rst best hypothesis, the N-

best hypotheses or the respective lattices depending on the

search mode. Stack decoders operate at least on two levels

of search: a) the outer level, which loops over the stacks

(word-level search), and b) the inner level, which loops

over time and states to search for complete words, starting

from the end-time of the hypothesis to expand, which is

1\Nozomi" is the name of the fastest, most comfortable and

most expensive bullet train in Japan, and also means \hope" in

Japanese

called state-level search or word-within search. Every time

a word-end is found during the time-synchronous word-

within search, its language model score is looked up using

the found word plus its history using the hypotheses which

are to be expanded. Because the dynamic LM score lookup

can take any word history into account, stack decoders can

easily make use of any kind of N-th order Markov language

model and also of non-Markov language models like link

grammars etc. Especially N-gram models of any order are

simple to implement, which is one of the major advantages

over the transition network decoders.

In this paper, based on a time-asynchronous stack de-

coder framework, it is shown how it is possible to handle

arbitrary order N-grams, how to generate N-best lists or

lattices next to the �rst best hypothesis at almost no com-

putational overhead, how to handle e�ciently cross-word

acoustic models of any context order, how to e�ciently con-

strain the search with word graphs or word pair grammars,

and how to use a fast match with delay to speed up the

search, all in one left-to-right search pass. The details of

a disk-based representation of an N-gram language model

are given, which make it possible to use LMs of arbitrary

(�le) size in only a few hundred kB of memory.

2. A ONE-PASS STACK DECODER

The decoder described here is in its basic implementation

similar to the approach described in [5] and [6], which

should be consulted for the basic search strategy. Because

of space limitations this paper concentrates on the descrip-

tion of some of the decoder modules and issues, which were

found to be important for time- and memory-e�cient per-

formance.

2.1. Stack module

The collection of stacks for each time t are accessed by

PUSH() and POP() operations taking partial hypotheses

as arguments. Because they are used frequently and usu-

ally contain a few to several hundred entries in a typical

application, the stacks (or more precisely lists, because ac-

cess to their elements is random and not based on a LIFO

concept) have to be set up e�ciently. The container types

used in other decoders are often special tree-structured

lists, which are ordered by score and limited in the number

of entries. Here a di�erent method is described which was

found to be most e�cient and simple to implement.

Pushing a hypothesis on a stack involves a check whether

a hypothesis being in the same LM state is already on that

stack. If yes, the scores of the two hypotheses are compared



and the better one is inserted into the stack, the other

one discarded. In case of an N-gram LM the LM state

check means to compare the last MAX(N � 1; 1) history

word IDs. One word has to be compared as a minimum

to not violate the at least �rst order Markov assumption

for the complete speech model. Although checking for LM

state equivalence for N-gram LMs can theoretically be done

in O(1) using a hash table with the N � 1 words history

as the key, it was found that it is in practice not more

e�cient than a simple non-ordered unlimited list that is

searched through linearly up to an average stack size of a

few hundred hypotheses. Pushing a hypothesis on a stack

can also improve the upper bound for the score at this

time, which has to be checked for. Popping a hypothesis

from a stack is an O(1) process, since it doesn't matter in

what order the hypotheses in beam are extended for the

implementation described here.

2.1.1. Lattice generation

Stack decoders can easily generate lattices at little com-

putational overhead in the �rst pass by slightly modifying

the LM state check procedure. Instead of discarding the

worse hypothesis in case of LM state equivalence it can

be linked into the lattice. A pointer on the best arc back

has to be updated to not loose the best hypothesis for the

current LM state and future reference. Compared to the

generation of the �rst best hypothesis there is only little

overall increase in memory for the storage of the additional

arcs in the lattices (section 3.).

2.1.2. N-best list generation

The hypotheses in an N-best list di�er by at least one

word ID. This can directly be checked for by extending

the LM state check to the complete history instead just

the MAX(N � 1; 1) history word IDs like necessary for

obtaining the �rst best hypothesis. It can be done either

exactly by checking each word, or approximately by using

a hash function for the history. A lattice within the N-best

list, referred to as N-best lattice, which includes all pos-

sible alignments and pronunciation variants for the same

word ID sequence in the possible paths taken backwards

from a lattice node, can be produced by merging hypothe-

ses instead of replacing them like discussed above for the

�rst-best lattices. Compared to the lattice generation this

procedure uses only little additional memory for the extra

nodes of the hypotheses, which are needed because of the

increased LM state space, and only little additional time.

Since for the generation of N-best lists only the LM state

check procedure was modi�ed, they can be generated in

the �rst pass like lattices.

2.2. N-gram module

A e�cient format for the LM was found to be the fol-

lowing: For a back-o� N -gram store all n-grams with

n = 1; 2; : : : ; N in a table for each n. Each entry in a table

has a word-ID, its LM probability and back-o� probabil-

ity, and a pointer to the beginning of the list of extension

word entries in the table holding the (n + 1)-grams. For

the table with the N -grams the pointers are not necessary,

since no higher order (N + 1)-grams are following. Each

part of an entry table holding a particular set of extension

words is ordered by its word-IDs to allow fast access using

a binary search. The number of a set of extension words

on any level n doesn't have to be stored because it can be

calculated by subtracting the pointer (on level n � 1) on

the current set from the next pointer (also on level n� 1)

on the next set. If the next set on level n doesn't happen

to have any extension words, indicated by a NULL pointer

on level n � 1, the next non-NULL pointer on level n � 1

has to be searched for, which is on average not more than

a few entries away.

The memory requirements for this N -gram representa-

tion are 8 bytes per entry for all fn < Ng-grams, and

4 bytes for all N -grams, assuming 4-byte pointers, 2-byte

word IDs and 1-byte representations for the LM probability

and the back-o� probability, uniformly distributed across

their log-scores, which was found to be a su�cient accuracy

to not cause any errors. Access time for this storage format

is of O(1) for the unigrams and of O((n�1)�log2(K)) for the

fn > 1g-grams using a binary search, with K being the av-

erage number of words following any n-gram entry. The av-

erage access time can be slightly improved by caching LM

states and their scores in a hash table for all fn > 1g-grams

that have been accessed before. This improves average ac-

cess time to O(1) for already used fn > 1g-grams, but

requires an additional check whether a certain LM state is

already in the hash table or not.

A disk-based representation of the N-gram can limit

memory requirements to a few hundred kB for N-grams

of any size [8]. The search for the N-gram scores on disk

during the search is of course very time-consuming and has

to be minimized using an e�cient caching scheme. An ef-

�cient implementation was found to be the following: Un-

igrams are stored in memory and all fn > 1g-grams are

stored on disk in the exact same format that was used

for the representation in memory, such that looking up an

n-gram can be done using the same algorithm. A set of

extension words following an n-gram is loaded into tempo-

rary memory to run the binary search for the correct word

ID in memory and not on disk. The LM states that have

been used once are cached in a memory-based hash table

to minimize disk access.

2.3. Cross-word models

A procedure to deal with cross-word models of any order

(triphones, quintphones, etc.) incorporating cross-word ef-

fects in a delayed manner was found to be very e�cient

in time and memory requirements, and is especially well

suited for a stack decoder:

� Run the state-level search for any set of hypotheses

to expand with only word-internal context-dependent

models.

� When popping the hypotheses from a stack to expand,

realign the last M words using cross-word models at

the word boundaries before entering the state-level

search to �nd the extension words.

� Because cross-word e�ects are incorporated with a

one-word delay, it is also necessary to realign the last

M words for all hypotheses on the �nal result stack.

This procedure as illustrated in Fig. 1 incorporates all

cross-word e�ects within the last M words, and is opti-

mal for cross-word triphones with M = 2 for most cases

and possibly M = 3, if the word before the last word is



a one-phone word. To capture all cross-word e�ects with

quintphones theoretically M = 5 is necessary, if all words

in the dictionary would be one-phone words.

STACK TO EXPAND

TIME

Figure 1. Visualization of the method to incorpo-
rate cross-word models of any context order. Cir-
cles denote hyp-nodes, �lled circles are the word
boundaries that are corrected by the procedure
using cross-word models before the stack (box) is
expanded. In this example only two words are re-
aligned, but there could be more like discussed in
the text. The same procedure is used for the fast-
match.

The realignment for each hypothesis to extend is in detail

done as follows: Take the lastM words and �nd the correct

(cross-word) HMMs for each phone at the word boundaries

which don't already cover the maximum available context

given the acoustic model set. Use a local Viterbi search to

�nd M new acoustic scores and possibly M � 1 new word

boundaries. Generate M new arcs and M � 1 new hyp-

nodes and replace the old hypothesis end-hyp-node by the

new one.

The correct cross-word HMM model is de�ned as the

model which covers the most context around the current

center-phone. This de�nition is also used for �nding the

correct context-dependent HMM within words during con-

struction of the tree lexicon containing context-dependent

models given only a monophone pronunciation dictionary.

Compared to the procedure described in [2], which lo-

cally rescores every word that is found during the state-

level search, the method described here rescores only words

that have been found to be considerably likely being part

of stacks to expand. The average number of hypotheses

to expand per frame is in general between �ve and one-

hundred and cross-word rescoring is only applied to those

few. This requires only very little temporary memory and

is fast, because of the low number of hypotheses and be-

cause of the fact, that most of the states to be evaluated

during rescoring for their observation likelihood are already

in cache.

A potential drawback of this method is, that because

cross-word e�ects are incorporated delayed, scores might

vary more during the lookahead, which might require larger

beams than if this delay wouldn't be used.

2.4. Fast-match with delay

The method to handle arbitrary cross-word e�ects is easily

extended to allow an e�cient acoustic fast-match with a

one-word delay, which in a similar form without delay is

described in [1, 4]. The basic idea of a fast-match in a stack

decoder is to use simple acoustic models to �nd possible

extension words, and rescore them locally with better, but

computationally more expensive models. This avoids the

use of expensive models for the initial state-level search

and can speed up the complete search.

The fast-match procedure described here keeps the use of

the expensive models at a minimum and is almost identical

with the method to incorporate cross-word models. Instead

of using word-within context-dependent (CD) models for

the state-level search, simple monophones with a low num-

ber of mixtures or small neural-network based models are

used in a context-independent tree-lexicon, and the found

words are inserted in the corresponding stacks. Rescor-

ing of the last M words including all cross-word e�ects is

done later using the accurate, but expensive CD models,

but only when a stack is expanded, such that many of the

previously found words will be out of the beam. The dif-

ference to the cross-word procedure from section 2.3. is,

that all phones of the last M words have to be mapped

to their correct CD HMM model, and not only the ones

at the word boundaries. This can be interpreted as local

rescoring with a one-word delay, which limits the number

of necessary rescoring turns per frame to less than ten to

one-hundred for most applications, and requires very little

additional memory.

3. EXPERIMENTS

All experiments were conducted using the described one-

pass stack decoder for the recognition of read sentences

from a Japanese newspaper using a 5000 word pronun-

ciation dictionary with on average 1.5 pronunciations

per word. The acoustic models are gender-dependent

decision tree state-clustered Gaussian mixture models

trained on 20k sentences per gender from the ASJ and

JNAS database. Acoustic preprocessing is standard 12-

dimensional MFCCs plus log energy, with applied cepstrum

mean subtraction per sentence and �rst derivatives every

10 ms. A trigram LM was trained on around 45 million

words from the RWC corpus containing four years of news-

paper articles from the Mainichi Shinbun, a daily newspa-

per in Japan. The standard test data are the �rst ten sen-

tences from the speakers 006, 014, 017, 021, 026, 089, 102,

115, 122 from the JNAS database. All acoustic models,

initial language models and the pronunciation dictionary

were kindly provided by the IPA group, who also de�ned

the test set [7].

Tab. 3. shows the results, for which the search parame-

ter settings were optimized to reach a low word error rate.

The experiments of this task were run in two modes, a

MODEL MALE FEMALE RTF

Kat/Kan Kat/Kan

129 x 16 88.7/87.5 91.8/90.8 9

2000 x 16 95.2/93.3 96.9/95.2 22

3000 x 16 96.4/94.8 95.9/94.5 23

129 x 16 87.9/86.7 91.0/90.0 9

2000 x 16 94.4/92.6 96.1/94.4 22

3000 x 16 95.6/94.0 95.0/93.6 23

Table 1. Recognition results for high accuracy,
cleaned of errors that shouldn't be counted in
Japanese (upper) and not cleaned (lower), for
Katakana (Kat) and Kanji (Kan) recognition mode.
Cross-word modeling was used.

Katakana mode, where all word-IDs and all transcriptions



are written only in Katakana, and in a Kanji mode, where

all word IDs and transcriptions are written like they occur

in a newspaper. Best recognition results in Kanji recogni-

tion mode are 5.2% word error rate (WER) for the male

using 3000 state models and 4.8% WER for the female

speakers using 2000 state models, if the results are cleaned

from errors that shouldn't be counted as errors in Japanese,

which can be classi�ed into two types. Type I errors are due

to the fact that there are no spaces in a regular Japanese

text, which were arti�cially introduced to de�ne words to

build a pronunciation dictionary and a LM. This leads to

ambiguous word de�nitions and many errors of the kind:

'a' 'while' , `awhile'. Also, in Japanese it is common and

correct to write many words with the exact same pronun-

ciation and meaning using di�erent symbols, which occurs

in English only for numbers (Type II errors). The raw

outputs from the recognizer are about 15% relative (1%

absolute) worse, showing that these errors, which are spe-

ci�c to Japanese, shouldn't be neglected. The Katakana

results, which hide misrecognition of homonyms occurring

in Japanese more frequently than for example in English,

overestimate the score of interest on average by about 1%

absolute.

Tab. 3. shows results for experiments that were run to

maximize decoding speed at a low (around 1%) search er-

ror and minimize memory requirements, with (a) a regular

memory-based trigram LM and (b) a disk-based LM. Al-

most realtime performance including all observation likeli-

hood calculations is possible with around 11% word error

rate using 10 MB of total memory. The disk-based LM

slows down the search by about a factor of three for the

monophones. The realtime factor and memory require-

ments for all results are for a 300 MHz Pentium II.

MODEL M F MEM RTF

Kat Kat (MB)

129 x 16 87.0 90.2 10 1.3

2000 x 16 93.0 94.6 20 9

2000 x 16 (fast-match) 93.0 94.6 20 7

129 x 16 87.0 90.2 4 3.9

2000 x 16 93.0 94.6 14 14

Table 2. Results for high speed and low memory,
with memory-based LM (upper) and disk-based
LM (lower), not cleaned of errors that shouldn't be
counted as errors in Japanese. Cross-word models
were used. Fast-match models were 3-state mono-
phones with four mixtures each.

The results shown in Tab. 3. compare the time and mem-

ory requirements for generating the �rst best hypothesis

with the time for generating lattices or N-best lists in the

�rst pass. It can be seen that the more complicated LM

state check for the N-best lists creates only little overhead,

and is almost independent of the length of the N-best lists.

4. CONCLUSIONS

It can be concluded that a time-asynchronous stack de-

coder is a conceptually attractive framework for integrating

many often needed procedures for speech recognition tasks.

Although e�cient in memory and faster than the decoder

SEARCH MODE RTF MEMORY

�rst best (absolute) 9 20 MB

�rst best 100% 100%

lattice 107% 106%

N-best list, N = 10 113% 100.4%

N-best list, N = 50 116% 100.4%

N-best list, N = 100 117% 100.5%

Table 3. Relative time and memory (as measured
by the UNIX top command) for several search
modes with beams leading to lattices of about 2500
arcs and 500 hyp-nodes, and an average N-best list
length of 90 hypotheses.

mentioned in [7] for the same task, it should be noted that

the speed of a time-asynchronous stack decoder like imple-

mented here is probably not optimal for the speci�c task of

generating a �rst-best hypothesis or a lattice from a feature

vector sequence, because the globally time-asynchronous

search over the state space results in the generation of

many (about 90%) later not expanded partial hypotheses.

This could be avoided by using a time-synchronous stack

decoder with multiple trees, which hasn't been tried here.

5. ACKNOWLEDGMENTS

This work wouldn't have been possible without the sup-

port from the IPA group [7]. Prof. Shikano from NAIST

pointed out the speci�c importance of cross-word modeling

for Japanese.

REFERENCES

[1] L.R. Bahl, P.V. de Souza, P.S. Gopalakrishnan, D. Na-

hamoo, M. Picheny, \A fast match for continuous speech

recognition using allophonic models", in Proc. IEEE Int.

Conf. Acoust., Speech, Signal Processing, pp. I-17 - I-20,

1992.

[2] L.R. Bahl, P.V. de Souza, P.S. Gopalakrishnan, D. Na-

hamoo, M. Picheny, \Word lookahead scheme for cross-

word right context models in a stack decoder", in Proc.

Eurospeech, pp. 851-854, Berlin, Germany, 1993.

[3] P.S. Gopalakrishnan, \A tree search strategy for large vo-

cabulary continuous speech recognition", in Proc. IEEE Int.

Conf. Acoust., Speech, Signal Processing, pp. 572-575, 1995.

[4] P.S. Gopalakrishnan, L.R. Bahl, \Fast matching tech-

niques", in Automatic Speech Recognition: Advanced Topics

Eds. Boston: Kluwer Academic Publishers, 1996.

[5] S. Renals and M. Hochberg, "Decoder technology for con-

nectionist large vocabulary speech recognition", Technical

Report CUED/ F-INFENG/ TR.186, Cambridge Univer-

sity, England, 1995.

[6] M. Schuster, "Nozomi - a fast, memory e�cient one-pass

stack decoder", ASJ spring meeting 1997, pp. 155-156, Yoko-

hama, Japan, 1997.

[7] T. Kawahara, et al, "Common platform of Japanese large

vocabulary continuous speech recognizer assessment { pro-

posal and initial results", Proc. EALREW-98, pp. 117-122,

Tsukuba, Japan, 1998.

[8] M.K. Ravishankar, \E�cient Algorithms for Speech Recog-

nition", Doctor Thesis, Technial Report CMU-CS-96-143,

Pittsburgh, USA, 1996.


