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ABSTRACT

The relationship between the optimal value of word insertion
penalty and entropy of the language is discussed, based on the
hypothesis that the optimal word insertion penalty
compensates the probability given by a language model to the
true probability.  It is shown that the optimal word insertion
penalty can be calculated as the difference between test set
entropy of the given language model and true entropy of the
given test set sentences.  The correctness of the idea is
confirmed through recognition experiment, where the entropy
of the given set of sentences are estimated from two different
language models and word insertion penalty optimized for
each language model.

1. INTRODUCTION

One of the most important merits provided by stochastic
framework in speech understanding systems, is the
mathematical principal of combining two or more set of
knowledge.  Most notably, by utilizing li nguistic knowledge
in speech recognition through stochastic language modeling a
very large vocabulary dictation system has been realized on a
PC platform. The principal of combining acoustic an linguistic
knowledge is given by Bay’s rule i.e.
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In the rule, disregarding denominator, a simple product of
acoustic and linguistic probabilities gives a score to word
sequence hypotheses even if the acoustic and linguistic models
are estimated independently.

However, in the real system, it is widely known that balancing
between acoustic and linguistic parameters is needed to
optimize the system performance. The typical form of
combining the two probabilities is

log ( | ) log ( )P P nQA W W+ −α     (2)

whereα  is known as language weight (LW), Q is known as
word insertion penalty (WIP) and n  is the number of words
included in the sequence W . Although utilizing the two
parameters is quite common, very few descriptions have been
given on the physical meanings and systematic optimization
method of the parameters [1],[2].  Therefore, it is necessary

to determine optimal value for each specific task, even if using
the same acoustic and linguistic models.

The purpose of this paper is to relate optimal WIP and entropy
of a language from a hypothesis that the optimal WIP can
compensate the language probability given by a language
model, i.e. word n-gram, to real probability. Furthermore,
based on this hypothesis, a systematic way to determine the
optimal WIP from the entropy of the test set is developed. The
effectiveness of the method is evaluated by speech recognition
experiments. The rest of the paper consists of the following
sections. In the next section, optimality of WIP is discussed. In
section 3, a method to estimate optimal WIP is proposed. In
section 4, the method is improved by taking the word position
within the sentence into account for the language modeling.

2. OPTIMALITY OF WORD INSERTION
PENALTY AND ENTROPY

Although the scoring given in (2) is a common form of
utilizing WIP and LW, we adopt the form below for the
combination;

log ( | ) {log ( ) }P P nqA W W+ +α .    (3)

In this scoring, by enclosing the WIP in the parentheses, the
sum, log ( )P nqW +  is regarded as a new language
probability.

From our preliminary experiments, the above formulation has
proved to be effective for removing dependency between LW
and WIP in optimization. Furthermore, it should be noted that,
in (3), the WIP nq  is added to the language score. We found
in [4] that WIP should be used as a bonus to avoid shorter
sentence preference in n-gram language modeling.

Therefore, introducing WIP is equivalent to compensating
language model probability, ( )P

M
W , in log probability

domain, by adding a score which is proportional to the number
of words in the sentence;

log � ( ) log ( )P P nq
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where � ( )P
M

W  is a compensated version ofP
M
( )W .

It is natural to think that the best recognition performance is
given when the compensated version of language probability is
equal to the true language probability. In that case, for the



optimal value of the WIP, q tìí
, the below relation is expected

to hold;
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The above relation can be rewritten as
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Furthermore, calculating an optimal value of WIP, q
ìíñ

, for a
given set of test sentences,
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by averaging optimal WIPs calculated for each sentence, we
can get,
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Assuming that the word probability is ergodic, finally, we can
rewrite the optimal value of WIP in terms of the entropy of the
language as follows.
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where, HM is the expected value of per-word log probability
of the given language model calculated over test set S , which
is sometime referred as test set entropy, whereasH  is the per-
word entropy of the language S .

3. ESTIMATING ENTROPY FROM
OPTIMAL WIP

From the above discussions, WIP can be calculated as the
difference between the entropy of the test set language and that
of calculated by the given language model. Thus, if an optimal
WIP is known for a particular language model, the true entropy
of the test set, and the optimal WIP for different language
models, can be estimated from (8). In this section, entropy of
test set sentences is estimated from WIP’s, each of them is
optimized experimentally for different language models, to
show the correctness of the above discussions.

3.1. Experimental Setup

As for language modes, word category base bigram and
trigram are used, each of them are trained by ATR dialogue
corpus [5]. The corpus consists of 7,740 sentences. The size of
vocabulary is 4,784 and the number of word categories is 27.
Trained word category n-grams are smoothed using Back-off
Smoothing [6]. As for acoustic model, triphone HMM’s
consisting of 1000 states are used. Each state has four mixtures
in the model. As for the feature parameters 12 MFCC and its

delta are used with delta log power.  For the test set, 150
sentences were extracted from the same corpus used for
language model training. The 150 sentences were then read by
a single male speaker and used for evaluation. For finding
optimal values of LW and WIP, recognition experiments have
been performed with variations in LW ranging from 2.0 to 30.0
in steps of 2.0 and WIP from –0.5 to 3.5 insteps of 0.5.

The entropy of the given language model, e.g. bigram, can be
calculated by the following way.
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category bigram probability and P w hi
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i

k( | )( ) ( )  is word
probability of wi

k( )  within the word class hi
k( ) .

The test set entropy of each language model is 6.38 [bit] for
word category bigram and 6.13 [bit] for word category trigram,
respectively.

Figure 1: Relationship between WIP and word accuracy at the
optimal LW values.  BG and TG shows the results of word
category bigram and trigram respectively.

3.2. Experimental Results

The recognition accuracy at various WIP values are shown in
Figure 1. From the figure, it can be seen that optimal value of
WIP is 2.1 for word category bigram and 1.9 for trigram
respectively. True per-word entropy of the test set calculated
from each results is;

z word category bigram case
H e≈ − × ≈6 38 21 3352. log . . ØßæñÚ

z word category trigram case
H e≈ − × ≈613 19 3392. log . . ØßæñÚ

Thus, it is confirmed that almost the same entropy is estimated
from different combinations of language model and WIP.
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The perplexity calculated from the entropy values are 10.2 and
10.5, respectively. These values are reasonable as the average
branching factor of a language consists of 150 sentences.

 4. SETTING WIP DEPENDING ON THE
SENTENCIAL LOCATION

4.1. Extending WIP

In the previous sections, WIP is modeled as a constant
thoroughout the sentence. This is based on the assumption that
the word probability is independent from the location in the
sentence. In this section, WIP is reformulated to be depend
upon the sentential location.

First, extending the basic WIP form of (4) to
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where, n  is the number of words included in the word
sequence W . Note that WIP is not value but function of the
sentential location.

The optimal WIP function is, then, also extended from (6) to
the form of,

q i P w w P w w w wM i i i iìíñ
( ) ln ( | ) ln ( | )= − +− −1 1 2 1� ,  (10)

for the bigram case, for example. As in the previous section,
we can calculate the optimal WIP function, q i

ìíñ
( ) , for a given

set of sentences S . Here, q i
ìíñ

( )  is given as the average of
q i
ìíñ

( )  over the set of word sequences, Wk , which satisfies
n ik ≥ , as follows.
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where M i( )  is the number of the sentences which contains
more than nk  words, and Wi  is a random variable
corresponding to the word wi . H W WM i i( | )−1  is a conditional
entropy of word Wi  preceded by the word Wi −1 , whereas
H W WW Wi i( | )1 2 1� −  is a conditional entropy of word Wi

following the given word sequence WW Wi1 2 1� − . In n-gram
modeling, which assumes the word sequence as a Markov
process, H W WM i i( | )−1  is constant to i . On the other hand,
H W WW Wi i( | )1 2 1� −  is monotonically decreasing function of i .
Thus, it is expected to converge to the true entropy of the
languageH . Furthermore, in general,

H W W H W WW WM i i i i( | ) ( | )− −≥1 1 2 1�   (12)

holds.

From above discussions, q i
ìíñ

( )  is expected to increase
monotonically as i  increase and converge to a finite value, as

shown in Figure 2. Thus, let γ
ìíñ

 the limit value of q i
ìíñ

( ) of
i → ∞ , per-word entropy of the languageS  is calculated by
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Figure 2: Global shape of the entropy of bigram language
model H W WM i i( | )−1 , true conditional entropy
H W WW Wi i( | )1 2 1� −  and the insertion penalty function q i

ìíñ
( ) .

4.2. Recognition Experiments

In order to confirm the effectiveness of changing WIP
depending on the sentential location, recognition experiments
to estimate the per-word entropy H  have been performed on
the same test set S  as the previous section. In the experiments,
q i( )  is parameterized by the below form and recognition
performance is measured for various combinations of γ  and
β .

q i i( ) ( )= − −γ β1 1 .   (14)

This form is based on our previous results that the recognition
accuracy was improved when q i i( ) ln( )=  [4]. The above
function approximates the logarithmic function where
10 25≤ ≤i  and converges to γ  when i → ∞  as shown in
Figure 3.

Figure 3: An example of q i( )  where β = 1125.  and γ = 35. .
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The obtained results are shown in Figure 4. From the figure,
the optimal value of γ  is approximated 2.0. This is a similar
value with that of using fixed WIP value in the previous
section. Since the obtained recognition accuracy is slightly
better than the fixed WIP method, the effectiveness of using
sentential location dependent WIP is confirmed.

The estimated per-word entropy is calculated as

H H W W e
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and the estimated perplexity value 8.9 is lower than the
estimation of the previous section.

The reason for this inconsistency is the difference between
conditional entropy H W WM i i( | )−1  in (15) and test set entropy
of the bigram HM  in  (8). It should be noted that the two
entropy values are calculated in different ways as shown in
below.

z Test set entropy is calculated by assuming that the
conditional probability is independent from sentential
locaion.
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z Conditional entropy is calculated by assuming that the
conditional probability is depending on the sentential
location.
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5. SUMMARY

In this paper, we have discussed the method of determining
optimal WIP from the viewpoint of entropy of a language.
Based on the hypothesis that the WIP compensates the
language probability given by a model to a real probability,
optimal WIP is formulated as a difference between per-word
test set entropy and true entropy of test set. The recognition
experiments have reveild that when estimating true entropy by
optimal WIP, the same entropy is estimated in both bigram and
trigram language models. Therefore, the relation between WIP
and entropy of a language is confirmed.

In this paper, sentential location dependent WIP is also
formulated. Although the converged value of WIP function is
very similar to the fixed WIP value, estimated entropy does not
coincide with the value estimated from fixed WIP. This
discrepancy results from using different methods to calculate
model entropy.

Figure 4: Recognition accuracy at various combination of
parameters to represent q i( ) . For this experiment LW α  is

fixed to be 14.0.
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