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ABSTRACT 2.SYSTEM IMPLEMENTATION

This paper presents a speech recognition system which In the speech recognition system which we propose we use
incorporates predictive neural networks. The neural networks HMM based phoneme models where each phoneme of the
are used to predict observation vectors of speech. The prediction  database is represented by a model consisting of one or more
error vectors are modeled on the state level by Gaussian  modeling states. The phoneme model has a non-emitting entry
densities, which provide the local similarity measure for the  and exit state and modeling states in between. Different to the
Viterbi algorithm during recognition. The system isevaluated on  standard HMM, however, each modeling state incorporates one
acontinuous speech phoneme recognition task. Compared witha  multilayer perceptron neural network of five hidden neurons,
HMM reference system, the proposed system obtained better  which is used to predict the current observation vector given one
results in the speech recognition experiments. past observation vector, so that we can write

1. INTRODUCTION &) =r(0,2). ()

Most of today’s speech recognition systems are based on Hidd¥fere f is the nonlinear function described by the neural
Markov Models (HMMs). Given a speech pattern in terms of af€tWork, ando,_; is the past observation vector.

observation vector sequence, the HMMs can represent lo
stationary segments of speech by means of states and can m
the variability in duration of the speech patterns through selfng ¢ (;) the ith coefficient of the observation vector of size N
transitions and transitions between states. The standard HMM, . . -

however, does not model the dependence between tﬁetlme t. Then, we can introduce the prediction error vector
observation vectors in a stationary segment, but rather considgrs dy,dy ... 'dN] , which is composed of the coefficients
that these observation vectors are generated randomly according '
to the state output probability distribution.

S@gldenoteé i (t)the ith predicted observation vector coefficient

dj =c;=¢;. &)
Recently, hybrid speech recognition systems have been proposed

where a certain sub-task of the speech recognition systemQ8g the hypothesis of a Gaussian distributed parameter d, we can
carried out by neural networks (for instance [1]). Among thgwodel its distribution by a multivariate Gaussian density
hybrid systems for speech recognition, there are the speedHd; u,2) , so that our speech recognition system consists of
recognition systems which are based on predictive neurfle parameter st A = (W,B,A), where W indicates the
networks, such as proposed in [2][3][4][5]. weights of the neural network, B the means and variances of the

o Gaussian distribution of the parameter d, and A the state
In our approach based on predictive neural networks, thgnsition probabilities.

observation vector sequence of speech is assumed to be

generated by a dynamic system, where a causal relation betw&@most recognition systems based on predictve neura networks
neighboring observation vectors exists. We model the functidhe prediction error of the neural networks is incorporated in the
describing this dependence by predictive neural network¥iterbi searchinform of the Euclidean distance [2][4][5], where
Further, we assume that the function provides class-specifigch prediction error coefficient obtains the same weight in the
information which can be useful for speech recognition. In oufistance measure. The Euclidean distance measure, however,
system we obtain this information by the prediction errogioes not take into account the different variance of the
measure and incorporate it in the Viterbi algorithm for speectpefficients. For vectors with cepstrum and delta cepstrum
recognition. parameters, for instance, the use of Gaussian modeling of the
prediction error coefficients can be advantageous since the
normalization to the variance of the coefficient increases the
weight of the delta cepstrum parameters, which have a small
dynamic range compared to the cepstrums.
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For the training of our system the predictive neural networks
have to be trained (parameters W) and the parameter values of
the HMM have to be estimated, which are the values of the
Gaussian densities and the state transition probabilities
(parameters B, A). The training steps are the following: 1)
Training of the predictive neural networks with the observation
vector sequence assigned to each state 2) Estimation of the
means and variances of the Gaussian densities for the new
parameter d for each state and estimation of the values of the
state transition probabilities.

The training of our system was started with a phonetically
segmented bootstrap database. After thisinitial training, a larger
training database was used for which a rough phonetic
segmentation existed. The system was trained with a small
number of training epochs on this database, then the recognition
result on the validation database was taken. The validation
database was used to control the performance of the system on
unseen data. After obtaining the result on the vaidation
database, the system re-segmented the training database and the
described process started again. When the best result on the
validation database was obtained, then the recognition rate of the
system on the test database was taken.

Different to the reference HMM system where training and
testing was carried out in a sequential way, in the proposed
system with predictive neural networks the training and testing
was done in the above described parale way in order to avoid
overtraining of the system on the training database.

Speech recognition was performed with the Viterbi agorithm,
which determined the most likely state sequence S with
T

POIM) = maxdago)say Apsy @)as@y st G

where b(d; ) is the state output probability for the new speech

parameter vector d. In the proposed system a single continuous
Gaussan density was used for each state to modd the
distribution of the parameter d.

In comparison to the HMM reference system, where the HMMs
modeled an observation sequence consisting of mel-cepstrum
based observation vectors o,, the vector sequence for the

proposed system consisted of a sequence of prediction error
vectors obtained by means of the predictive neural networks.
Therefore, in the proposed system the state output probability is
computed by b(dt) , where the reference system computed

b(ot).

The performance of the proposed system was compared with
that of the reference HMM system. ThisHMM system also used
a single continuous Gaussian density per state and was trained
with the Baum-Welch algorithm on the training database.
Although the same test database was used both for the reference
HMM system and the proposed system, the reference system
had a dlightly increased training database due to the fact that for
the reference system no validation database was needed.

Both the proposed system and the reference system used a very
simple grammar network for recognition which only required
the beginning and end of the recognized phoneme seguence to
be slence while any other combination of succeeding
recognized phonemes within the sequence was allowed.

3. DATABASE AND RECOGNITION
TASK

The bootstrap database was a small phonetically segmented
database of Spanish speech with a total of 2259 phoneme
samples, with which the initial training of the models was
carried out. Then, for training and testing of the recognition
system the Spanish EUROM1 database was used. The training
database contained 29738 training phoneme samples, the
validation database had 7236 phonemes and the test database
consisted of 12928 phonemes. The databases were labeled into
26 different phonemes.

The speech data of the databases was clean continuous speech
sampled at 16 kHz. We used speech frames of 25 ms and a
frame shift of 10 ms. The speech data was Hamming windowed
and pre-emphasized. Speech was parametrized into 12 liftered
mel-frequency cepstrums with delta parameters, providing an
observation vector of 24 coefficients for each speech frame.

The task of the speech recognition system was continuous
speech phoneme recognition. Further, the test database was
speaker- and text-independent of the training database.

4. EXPERIMENTAL RESULTSAND
ANALYSIS

In this section we report the speech recognition results obtained
with the proposed system which used the local distance measure
based on the new parameter vector d. First, we present some
preliminary experiments which illustrate some statistic
characteristics of the predicted observation vectors and the
prediction error measure. In a second part we evaluate our
system in a continuous speech recognition task and compare the
results with the reference system.

In the preliminary experiment our objective is to compare the

variances of the coefficients ¢;, ¢;, and d;, where ¢; isthe

ith coefficient of the mel-cepstrum based observation vector, c;
is theith coefficient of the predicted observation vector, and d;

is the ith coefficient of the prediction error vector d as given in
equation (2). For the preliminary experiment a speech
recognition system with five states phoneme models was trained
as described in section 2. After training the variances of the
coefficients ¢;, ¢;, and d;, were computed. In Figure 1 the

variances of the coefficients for the third state of the model for
the phoneme D are shown.



Ev(o)
B v(op)
Ov(d)

Variance

- indn
il

- m n N~ (o]
Coefficient

11

Figure 1. Variances of 12 coefficients of the observation vector
of the third state of the models D. The denominations are: v(0) =
variance of coefficients of the observation vector; v(op) =
variance of coefficients of predicted observation vector; v(d) =
variance of coefficientsd.

In Figure 1 it can be observed that generdly
Uéi < Ty, < O'Ci . The fact that O'dl_ < aci indicates that the

predicted coefficient ¢; is correlated with the coefficient ¢; of

the observation vector, so that d; =c; —¢, has a smaler

variance than ¢; . Also, it can be seen that the dynamic range of

the predicted coefficient ¢; is smaler than that of the

1

coefficient c:

; of the observation vector, since O, <0 .

1 1

From the preliminary experiment it can be seen that ¢; (¢)

generally approximates the coefficient ¢; (¢) since 0, <0 .
1 1

In order to evaluate the proposed system, we performed the
speech experiments with phoneme models of three, four, and
five states, where in an experiment the same size of phoneme
model was used for all the phonemes. The modeling of the
prediction error vectors on the state level was made by a single
continuous Gaussian density per state. The phoneme models
allowed self-transitions and transitions to the next state.

The system was trained first on the bootstrap database and then
training was carried out on the EUROM1 training database. The
training process of the system was controlled by the results on
the vdidation database. When the best performance on the
vaidation database was obtained, then the recognition results on
the test database were taken.

In order to compare the results of the proposed recognition
system, we carried out speech recognition experiments with the
HMM reference system. The reference system modeled the
sequence of observation vectors consisting of the mel-cepstrum
vectors and delta parameters.

In the Figures 2 and 3 the recognition results are presented for
recognition systems using three, four, and five state phoneme
models.
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Figure 2: Recognition results on the test database in %Correct
of the proposed system based on predictive neural networks (Sys
b(dt)) and the reference system.
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Figure 3: Recognition result on the test database in %A ccuracy
of the proposed system based on predictive neural networks (Sys
b(dt)) and the reference system.

In Figure 2 and Figure 3 the speech recognition results are
presented in  %Correct and %Accuracy, respectively.
Considering the %Correct and %A ccuracy results, it can be seen
that the proposed recognition system increased the recognition
rates with the increase of the number of states. This observation
is also made for the reference system, which also increased the
performance with the increase of the number of states. Secondly,
it can be observed that the proposed system outperformed the
reference system in the three, four and five states phoneme
models, both in the %Correct and %A ccuracy measure.

From an architectural point of view the proposed system is
different from the reference system in the sense that its phoneme
models based on HMMs incorporate additionally predictive
neural networks in each of the modeling states. These neural
networks perform a state-specific  nonlinear  feature
transformation of the mel-cepstrum vector sequence into a
sequence of prediction error vectors. Therefore, different to the
reference system where the HMMs model the origina mel-
cepstrum sequence, the HMM based phoneme models of the
proposed system model a state specific vector sequences of
prediction error vectors.

The recognition results of the experiments indicate that the
incorporation of the predictive neura networks in the system



improved the recognition rates. In what concerns the state
transitions and the number of continuous Gaussian densities per
state, the classifier of both the proposed system and the
reference system is based on the same HMM structure.
Therefore, the experimental results indicate that using the new
features obtained by the nonlinear feature transformation with
the neural networks provides a better performance.

It is known that the performance of a speech recognition system
is influenced by the interaction of many of its parameters.
Therefore, it is difficult to identify in which sense the new
observation vectors consisting of the prediction error vectors
influenced on the performance of the recognition system.
Nevertheless, we shall point out to some aspects of the system,
where the new parameters could have influenced:

1. Since both systems used the same HMM architecture, it
could have occurred that a more accurate modeling of the
density of the prediction error vectors was possible with the
single continuous Gaussian density than it was for the
density of the mel-cepstrum vectors. Let us assume that an
observation vector is obtained in function of a past
observation vector and some Gaussian noise component
such that o, = f(0,_q) + €. If the predictive neura

network after training encodes well the deterministic
function, then the prediction error vector as given in
equation (2) may consist mainly of the random component
which the neura net cannot predict. If we further assume
that this prediction error has a singlemodal Gaussian
density, then one Gaussian density per state which we used
in the proposed system could have been an accurate model
for the probability density of such vectors. Differently, it is
known that if for the mel-cepstrum vectors a mixture of
Gaussian densities per state is used then the recognition
results improve.

2. The HMM was a more suitable model for the observation
vector sequence consisting of the prediction error vectors
than it was for the mel-cepstrum vectors. The standard
HMM assumes that no correlation exists between
observation vectors of a stationary segment and that these
observation vectors are emitted randomly by the HMM state
according to the state output probability density. However,
one can assume that there is some correlation between
neighboring mel-cepstrum observation vectors, since it
allowed the prediction by the neura network. Due to the fact
that the HMM does not model the correlation of observation
vectors, it can be argued that this model is not completely
accurate to represent well the process which generates such
an observation vector sequence. As outlined above,
compared to the mel-cepstrum observation vector sequence,
the prediction error vectors could consist rather of random
components, for which the correlation between observation
vectors in the vector sequence is less. Then, for such an
observation vector sequence the HMM was a more
appropriate model. Due to the better fit of the HMM to the

vector sequence of prediction error vectors, the recognition
rate of proposed system has improved compared to the
reference system.

5. CONCLUSIONS

The proposed system based on predictive neural networks
outperformed for all tested phoneme models of 3, 4, and 5 states
both in %Correct and %Accuracy the reference continuous
density HMM system (Figure 2 and Figure 3). Our results
showed 1) the incorporation of predictive neural networks in a
speech recognition system; 2) that with predictive neura
networks we improved the recognition rates compared to a
reference continuous density HMM system, which points out
that the features derived from the predictive neural networks can
be useful for speech recognition.
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