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ABSTRACT best N sentence hypotheses until any one is accepted by the
natural language understanding part. However, for spontaneous
It has been relatively difficult to develop natural languagepeech with fragments, disfluencies, OOV words, and ill-formed
parsers for spoken dialog systems, not only because of thentence structures, it's quite difficult to get the sentence both
possible recognition errors, pauses, hesitations, out-adcoustically promising and linguistically meaningful among the
vocabulary words, and the grammatically incorrect sentengeep N hypotheses with a proper N value. So, robust parsing [3]
structures, but because of the great efforts required to develoas used in case of the failure of full parse, while tightly coupled
general enough grammar with satisfactory coverage aigtegration strategies [4] were further developed to achieve
flexibility to handle different applications. In this paper, a nevpetter performance by making use of linguistic analysis at early
hierarchical graph-based search scheme with layered structurgtigges. In another way, some graph-based, or called lattice-based,
presented, which is shown to provide more robust and flexibfsarsing strategies [5][6][7] were developed to manipulate the
spontaneous s@chunderstanding for spoken dialog systems. word-graph interface instead of the N-best interface. These
graph-based parsing schemes were specially designed for spoken
1INTRODUCTION language with uncertain word candidates. In this paper, a robust
and flexible graph-based parsing strategy is proposed and
Traditionally, natural language understanding is integrated wituccessfully applied to date-time phrase detection and
the speech recognizer with a N-best interface in spoken dialagderstanding in a voice memo system and spontaneeashsp
systems [1][2], that is, the recognizer sequentially generates itaderstanding in a train ticket reservation system for Mandarin
Chinese.

2. SYSTEM OVERVIEW

The architecture of our spoken language understanding system is
shown in Figure 1. It consists of three major function blocks:
keyword spotting, semantic parsing, and semantic transcription.
A keyword spotter [8] is an acoustic front end that generates
promising keyword candidates with sub-syllable verification
techniques used. The keyword graph is then processed by a
semantic parsing stage, which outputs semantically meaningful
N-best ‘tag-sequences’ with their associated parsing trees. The
semantic transcription stage finally transcribes tag sequences
into semantic slots, rejects inconsistent tag sequences and
outputs consistent semantic slots for response generation. The
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Generation in Figure 2. By our algorithm, considering the grammar rule
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. . . regarding “HOUR” should be determined after those for
Figure 1: Architecture of spoken language understanding “NUMBER"” and “O'CLOCK”



Figure 2: Hierarchy for semantic tags

one. During this bottom-up search, the lower-layer tags are
“merged” into higher-layer tags as shown in Figure 4. A best first
search based on the tag n-gram language models is further
applied to find the top-N tag sequences on the tag-graph
hierarchy under the constraints of the task domain knowledge
and the available dialog corpus. For example, in date-time
understanding for voice memo systems, it's proper to constrain
the best first search on target tags such as DATE, TIME and
filler words with constraints on appearing times for each tag.
Moreover, the n-gram scores could be dynamically adapted

According to the layers that the tags are assigned to, all #&cording to current dialog context by the dialog control
grammar rules can then be used to construct a set of gramg@omata.

trees for all the different layers. For example, all grammar rules

of the tags in the same layer, say ldgeare built into a grammar 2.2 Semantic Transcription

tree, sayT,. For each grammar rule, the RHS tags spanned into ) ) )
tree nodes are in layers lower tHamwhile the LHS tag attached A\fler semantic parsing, these top-N tag sequences with
at the leaf node is in layér as shown in Figure 3. If the highestaSSOC|ated parsing trees are then sent to a semantic transcription

layer is layeiK, there are totallK grammar trees, named &s, . ) X .
T, ... T for layer 1,2,... K, respectively. Now, for the input information consistency among dialogue turns are checked, and

utterances the keyword graph is used as the initial graph i

module, in which both the knowledge correctness and

ffigally transcribed into associated semantic slots for speech

bottom-up search algorithm defined in Appendix B, in which aHmderstan_ding. To retrieve th_e s_emantic meanir_lg of tag sequence,
the higher-layer tag graphs are generated hierarchically one $8Fh 12 in grammar rules is first attached with a symbol that
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represents its semantic meaning. The tag “WEDNESDAY", fophrase was tagged as wrong if any error occurred in the
example, is attached with a symbol “3” which represents indemrdividual slot. For voice memos, without phrase verification,
of this weekday while the tagliX"(“tomorrow”) is attached the average phrase accuracy is only 59.11%. Further details for
with a symbol “+1” which represents the date by reference gpice memos are listed in Table 2. It is obvious that for those
today. Then each tag in the sequence with attached symbol@&ce memos containing only one date-time phrase the accuracy
further transcribed into semantic slots, such as yy/mm/dd, by i actually very poor, while for those with three date-time
associated procedure in the dialog control automata. Based @lirases the accuracy is much better, with 26.67% and 71.21% of
this approach, not only the semantically simple tags such @ste-time phrases spotted correctly respectively. On average, the
“tomorrow” can be expressed and transcribed, but théate-time expression part accounts for only 22.82% of the voice
complicated ones, such as “mothers’ day”, can be interpretgtemos in length, i.e., the what-to-do expression is about three
correctly. During semantic transcription, knowledge correctnesignes longer than the date-time expression. Thus, those voice
such as range of value is also checked to reject those sequermaegios with one date-time phrase are very likely to be inserted
with knowledge inconsistencies while phrase verification is dor@ substituted by the fake date-time phrases spotted from the
to reject those sequences with low confidences. After thery long what-to-do expression part. When phrase verification
semantic transcription, the output semantic slots are used #was applied to filter out the date-time phrases with lower scores,

generating response to the user. the phrase spotting accuracy was improved to 71.98% at a
rejection rate of 10.34%. For simple queries that have no what-
3. EXPERIMENTS to-do part, 88.24% phrase accuracy was achieved. It is much

better than that of voice memos as expected. However, the
We first test our tag-graph search scheme on the applicatigécuracy degraded to 85.41% with phrase verification applied. It
domain of a Mandarin voice memo system [9]. The voice menid because most of the errors occurred in simple queries are from
system provides functions of automatic notification and voic#e highly acoustically confusing phrases that roughly align with
retrieval using techniques including both the general conterfiorrect phrases and can not be rejected by phrase verification
based spoken document retrieval approach and the date-tifabably.
expression detection and understanding approach. A voice
memo mainly includes date-time expression and the arbitrary

what-to-do part. The memo “I'd like to have dinner with Mr Voice Memos Simple Queries
Wang at five o’clock next evening”, for example, contains the No Veri. | With Veri.| No Veri.| With Veri.
date-time expression “at five o’clock next evening” and what-tns. 4.92%(10) | 1.65%(3) | 0.00%(0) 0.00%(0)
do part “I'd like to have dinner with Mr. Wang”. The date-timepg|. 10.34%(21) 12.09%(22) 2.94%(7]) 4.72%(11)
expression is detected and understood, and then the memo gy’ 25.61%(52) 14.29%(26) 8.82%(21) 9.87%(2B)
into speech database for retrieval by speech queries that co ﬁg&uracy 59.11% 71.98% 88.24%| 85.41%
date-time expressions. At present, simple speech que BRrase nol 203 182 238 >33
containing only date-time expression are used in our test-to :

predict the upper bound for our understanding approach basegble 1: Results of key-phrase spotting

on the keyword spotting front end. But in fact, quasi-natural-

language queries such as “Do | have anything to do around typthe second experiment, we apply our understanding approach
o'clock on Monday” or “Please show me the memos of thig a train ticket reservation system, which provides the user with
afternoon” are valid in real use. These quasi-natural-languagespoken dialogue interface such that the information of date,
queries are very similar to voice memos in the structure excapthe, kind and number of tickets, and from-where-to-where
that they are usually much shorter and have limited sentengguid be retrieved for ticket reservation. Hundreds of sentences
patterns. Thus, only voice memos and simple queries but ngé used to train the tag five-gram language models by the boot-
quasi-natural-language queries were used here to evaluate @hpping method. 112 spontaneous utterances containing date-
date-time expression detection and understanding approachtif\e phrases are selected among 452 sentences uttered by four
total of 102 voice memos and 100 simpleeesth queries males and four females in 54 real dialogs, and only date-time
recorded by four male speakers were used in the following|ated semantic slots are considered in the calculation of phrase
experiments. Table 1 shows the results of key-phrase spottiRgcuracy. The date-time phrase accuracy for the train ticket
Note that, here the date-time expression part of each utterapggervation task, as shown in Table 3, is up to 77.14%, which is
(voice memo and speech query) may contain several phrasgsiter than that of voice memos with verification because the
such as “DATE", “TIME-RANGE" and “TIME", and each train ticket reservation system uses tag five-gram language

phrase may contain several semantic slots, e.g. the phrasgdels, while the voice memos contain unconstrained what-to-
“DATE” may contain year, month and date. A total of 203y parts.

phrases were found from the 102 voice memos. The whole

Without verification With verification at 10.34% rejection rate
# of phrases/sent. 1 2 3 1 2 3
Insertion 20.00%(9) 3.85%(1) 0.00%(0) 7.50%(3) 0.00%(Q) 0.00%(Q)
Deletion 0.00%(0) 11.54%(3) 13.64%(18 0.00%(0) 13.64%(B) 15.83%(19)
Substitution 53.33%(24) 30.77%(8) 15.15%(20Q) 40.00%(16) 0.00%(0) 8.33%(10)
Accuracy 26.67% 53.85% 71.21% 52.50% 86.36% 75.83%

Table 2: Results of key-phrase spotting with respect to different number of phrases contained in a voice memo



Vonc.:e Menps Slmple Querl_es Train TICKet RL(r) - max ET L(T_r ) % 1 for every rule r
With Veri. | With No Veri.| Reservation i '
r.
Ins. 1.65%(3) 0.00%(0) 2.86%(5) Ti ii-th tag entry of rule r
T R t
Del. 12.09%(22) | 2.94%(7) 8.00%(14) L(t) =max E LR, )E for every rule r
|
Sub. 14.29%(26) 8.82%(21) 12.00%(21) R_t:i—th rule fortagt
|
Accuracy | 71.98% 88.24% 77.14% if any of RL(r) and TL(t) is updated, goto loop
else done
Phrase no| 182 238 175
Appendix B : Hierarchical Tag-Graph Search

Table 3: Phrase accuracy for different kinds of utterances Given the grammar treds , T ,..., Tk and the initial grapls, , a

bottom-up search algorithm can be defined in an iterative form
as follows.

G=S(Gka, T, k=12, ..., K.
where K denotes the max layer
Gy denotes the graph of layer k,
Gx1={Gg,G,...,G.} denotes

the union graphs of layers lower than k
Tk denotes the grammar tree of layer k
S denotes the search algorithm
Gy denotes the initial graph

4. CONCLUDING REMARKS

This proposed approach is more robusicduse it tries to
accumulate as much knowledge as possible including the
acoustic scores, the grammar rules, and the tag n-gram language
models, etc., before the final decision of best first search is made.
In other words, for this approach, all the generated sentence
hypotheses, expressed as N-best tag sequences with associated
parsing trees instead of the N-best word sequences, are both
acoustically promising and linguistically meaningful. Also, such

a scheme is more flexible not only the layered hierarchy makes ) ) .
the knowledge representation more structural, easier to hanE'l-I'é_e algorithmS recursively match the g_ramrr}ar tr'ﬁgwnh _the

with better portability to different tasks, but the scheme ignion tag-graphs of layer lower than(i.e. G'c.1). The initial
general enough taccept different initial graphs, such pisone  9"@PhGo here is the keyword graph generated by the keyword
graphs or syllable graphs. In fact, it was found that in dail§Petting front end. But in general, the algoritBroan be can be
dialogs, the semantic tags below phrase level are more struct@gPlied to other initial graphs such as syllable graph or phone
and rule-based approaches with good knowledge representat5aPh-
seem to be more helpful than probabilistic approaches, while for
semantic tags above the phrase level, the phrase structures are

usually identifiable in islands but the sentence structures can Pe Patti Price, “Spoken Language Understanding”Sarvey

ill-formed in spontaneous spch, therefore the probabilistic_ _ of State of the Art in Human.Language Technolp@iap.
approaches seem to be more helpful than grammar rules. This is 1. 49-56. 1995

why in the proposed approach the loose probabilistic tag n-gr. N\ Zue. “Conversational Interfaces: Advances and
models are used above the phrase level, but the tighter rule-based Challendes“Proc Eurospeectpage KN 9-18, 1997

constraints are used below the phrase level, which gives MY€ g geneff “Robust Parsing for Spoken Language Systems”
robust spechunderstanding. The proposed approach has been P'roc ICA'SSP189-192 1992 '

applied to date-time phrase detection and understanding in, a W. Ward, “Integrating Semantic Constraints into the

voice memo system and spontaneouseshunderstanding in a SPHINX-Il Recognition SearchProc. ICASSPII-17-20
train ticket reservation system for Mandarin Chinese. 1994 ' '

5. Lee-feng Chien, “Some New Approaches for Language
Modeling and Processing in Speech Recognition
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