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to use non-parametric techniques by computing distances using

ABSTRACT the training data directly.

Speaker recognition is usually accomplished by building a sparametric Distance comparisons are made between the
of models from speech ofkmown speaker, training data, and gistributions in the model space, models are built from both the

subsequently using a pattern matching algorithm to score tlE‘fﬁining and test data and a distance between the models is

speech from amnknown speaker, test data. In this paper W& mputed [6]
discard the notion of train and test data in speaker recognition P '

and introduce the multilateral scoring technique.  Thigy the following first we review the model likelihood approach.

technique comprises building speaker models on material f@f,o, we develop the idea of multilateral scoring firstly by

the known speaker and matching the unknown speaker datacE%bining recognition scores from test speech matched to

these models, the traditional app_roach to speaker remgmt'?ﬂbdels built on the training data and then from training speech
The resultant scores are fused with an equivalent set of scores )

produced by matching the known speaker utterance to modg@tChed to models built on test data

built on the unknown speaker data. Significant improvements

have been achieved using this technique on the NIST 1996, 2. MODEL LIKELIHOODS
1997 and 1998 Speaker Recognition Evaluation data. Resq-l}
are presented for two speaker recognition systems, the firs

based on Hidden Markov models and the second based I

ﬁilateral Scoring This technique draws heavily on the
roach used in speech agnition in which we attempt to

Gaussian Mixture models. explain a sequence of observations by a sequence of models. In
speech remgnition the sequence of models is the required
1. INTRODUCTION output of the system, in speaker recognition it is the probability

. ) o of the models given the observationﬁ(mﬂo) which is
Speaker recognition is usually accomplished by building a set

of models from speech of known speaker, training data, andeduated to the probability of the speakefs). However
subsequently using a pattern matching algorithm to score thgical pattern matching techniques estimate the probability or
speech from amnknown speaker, test data. In this paper wkkelihood of the model given the observations. These are
discard the notion of train and test data in speaker recognitioglated by Bayes theorem,

and state the problem as follows:

: ploim, Jp(m,; )
“Given a sample of speech fronkaown speaker and a second p(mj\o) T —
sample from an unknown speaker determine the probability that r(0)
both samples were spoken by the same speaker.” ) - .
Usually the prior probability of the speakp(mj) is assumed
We assume that we can periodically extract a sequence t8fbe the same for all speakers and is disregarded. However the

obseryat_lons or_feature vector®)J from t.he speegh Wh_'Ch estimation ofp(O) has led to problems in the past. Noting that
contain information about the speakers identity either in the

spectral envelope, usually represented as cepstral coefficient{0) = Zp(0|m,-) we have,
and/or the spectral fine structure, that is pitch. We must then i

estimate the likelihood that the training observations from the

known speaker and the test observations from the unknown P(O\mj)
speaker are samples of the same distribution. Three approaches p<m-/|0)= ZP(OW')
to this problem suggest themselves; these are, - '

Model Likelihoods this is the usual approach where a
parametric model is estimated from the training data and I\Jiow
pattern matching algorithm is used to match the test
observations to the model, examples of this are Hidden Mark&peakers which normalises the |ike"h0¢'€0|mj)- Hence the

Models (HMMs) [1][2], Gaussian Mixture Models (GMMS) [3] exact evaluation ofp(0) is clearly impossible. Therefore two
or Neural Networks (NNs) [4].

Zp(O\m,-) is the sum of the likelihoods for all possible

1

approximations to this have been proposed. The first relies on
Nearest Neighboursan alternative to model likelihoods [5], is



the observation thap(0|mj) will be small for all but a small (s) - PO, Imy) p(OkIm,)

set of similar speakers and that the approximation PO, M) p(O| M)
ZP(O\”H) ~ ZP(OWf) which can be achieved by adding the log likelihood scores for
; ed the two tests. These scores may have been derived from a

HMM, GMM, NN or some other pattern matcher.
can be made. The set is referred to as the cohort of speaker ] ]
j and the verification score is modified by the cohort score[7]. 3.2. Multilateral Scoring

The other approach is to construct a world or general matel . .
. . . ]n many cases more than one sample of data is available for the
which may for example be a speaker independent model in the

. nown and unknown speaker. For example, the NIST
case of a Hidden Markov Model system [8]. Then we have . . P . . p. .
Evaluations contain a two-session training condition where the

p(0| m ) data for the known speaker has been collected on two separate
! occasions. Traditionally one set of models is built combining
the data from all of the sessions. However, the bilateral scoring

. . , technique described above can be extended to the multilateral
that is the world model score normalises the speaker’s score.

. . . case to exploit the additional information available from the
This has been found to work well in practice and to perforr(q_ . . .
. ifferent sessions. Separate models are built for each session of
better than the same systems using cohorts.

data from the known and unknown speakers and corresponding
The implicit assumption in the foregoing is that the models aggores produced using the pattern matching technique. The
derived from the training data and that the observations amultiple scores can then be combined using a data fusion
feature vectors extracted from the test speech. This natural@chnique.
follows from the speech regnition paradigm and is used even

when no model sequence exists for example when using 41 EXPERIMENTAL CONFIGURATION

GMM or Neural Network. In fact building models from test . . . . . .
dat d tching the training data to th i " l_'l('jhe experiments described in the following section were carried
aa an ma ¢ _|ng_ c ra'”'“g a_a o these _IS equa y \_/a But on the NIST 1998 Evaluation data. While several different
The only limitation is the practical issue of having a sufficient e . .
. ) , tests were specified in that evaluation the results given here are
amount of data to train the modelseiach case. We will refer

. ) ) for the 30s test conditions. The 30s test conditions give enough
to either of these methods as examplesirdfateral scoring .
. - . . _s;]peech to build the sewd set of models on the test data. There
Now we consider how we can use the information available i . . . . .
. ) are three 30s test conditions, one-session train, two-session train
the training and test data more effectively.

and two-session full train. There are 250 men and 250 women

plm;10)= Ao

3. CROSS VALIDATION target speakers and a total of 2500 tests dach of the
' conditions.
3.1 Bilateral Scorlng The acoustic analysis used in the experiments was as follows.

Informal observation of the performance of speaker verificatio-ll_'—nhe data was §a_mp|e_d at SkHZ and was then filtered using a
ﬂhtsrbank containing nineteen filters. The log power outputs of

systems over the years has led us to conclude that when usi filterbank ¢ di | | ici
unilateral scoring, impostors are not reciprocal. That is whetrt'\Ie iiterbank were transformed into twelve cepstral coefficients

the models built from speech from speaker A are matched _I?_Q]d their f:‘;_St_ and second denvatn(;es at a frame (;a(tjelof 10ms.
speech from speaker B they do not give high Hagis ese coefficients were augmented by energy and delta energy

although spech from speaker A matched to the models buiRarameters to give a thirty-nine element feature vector. The
from speech from speaker B give high likelods. Assuming mean of each of the cepstral parameters was estimated for each

that samples of speech from the same speaker always matc%%%mem of speech and subtracted from each of the feature

well irrespective of which is used to build the models we havevaeCtorS'

m_echanlsm for improving the rejection of false alarms. To do 4.1 Hidden Markov Models
this we redefinep(s) as,
The subword models used were three state Hidden Markov
P(S) = P(mk \Ou>mu|0k) Models with continuous mixture distributions and a left to right
topology. No skipping of states was allowed. Speaker
where the subscriptsk and u indicate the known and jhgependent models were built as follows. A set of subword
unknown speakers respectively. Assuming that, [0,) and  models corresponding to the forty-one phonemes of American
p(mu|0k) are statistically independent we have English was built using the American-English part of the OGI
Multilingual Corpus. Recognition was then performed on the
training material and the results of the recognition were



compared with the annotation files to give a confusion matrix % b_!
40 LN ilateral . ——
between the subword models. train-test -
\ test-train -----
The number of subword classes was then reduced by combining 20 N\
subword units likely to be confused, reducing the number of 9
classes to twenty-eight. The trained classes so combined were § 10
then used to build a new set of speaker independent models 7z 5
including additional Switchboard data taken from the 1995, §
1996 and 1997 Evaluations. Each model state had three é 2 T
Gaussian mixture modes. ! Y
0.5
At training time these speaker independent models were used to 02
segment the training speech for each of the target speakers and 01
speaker dependent models were then built from this speech 0102051 2 5 10 20 40
using the mean estimation model building technique [1]. Each False Alarm probability (in %)

of the speaker dependent models had three modes per state. fygyre 1: HMM Bilateral Results for NIST1998 Evaluation
similar set of models was also built from each of the test files. Data, One Session Training, 30 Second Test.

4.2 Gaussian Mixture Models

. . The third plot of Figure 1 shows the effect of fusing the train-
A second speaker recognition system was set up using Gaus%aS and test-train scores, bilateral scoring A linear

mixture models (GMMs) [3]. A single speaker independent. . .
GMM was trained using the EM algorithm to maximise théllscrlmlnant formed by adding the scores was found to be a

likelihood of the data given the models. The GMM had 25Fﬁear optimal discriminator for the 1996 Evaluation data and was

. . erefore used for the 1998 tests. A significant improvement in
modes and was trained using the same data as the speakée 9 P

. . perFormance has been achieved for all parts of the DET curve.
independent HMMs described above. At a 20% miss rate the false alarm probability has been reduced
Target speaker dependent GMMs were built by adapting tigy a half. The equal error rate has also been reduced from 8.5%
speaker independent GMM. Unsupervised Bayesian adaptati®n6.9%.

was used to train the speaker dependent GMMs using tt&

. . ﬁe one session training, 30 second tests described above were
training data of the target speaker. The variances of the speaker . . .

L . repeated using the 256 mode Gaussian mixture model system.

dependent GMMs were not adapted remaining identical to the" - ,

. . . . During recognition an unknown speaker'eph was matched

speaker independent variances. This is the same technn%ue

described above for building the HMM models and prove 0 @ GMM built from the training data of the hypothesised

. arget speaker and a speaker independent GMM. A score was
more robust and sgessful than any technique where the .
. . . nerated for each of the target speakers by accumulating the
speaker dependent variances were adapted or estimated dire - . .
from the data log likelihood ratios foreach frame. The z-norm technique [3]

was used to align the scores across speakers. Figure 2 shows

5. EXPERIMENTS the DET curve achieved for the train-test condition. The second
plot on Figure 2 shows the result of matching the training
5.1 Bilateral Scoring speech to the GMM built on the test speech, test-train.

During recognition an unknown speaker'ssph was matched The third plot of Figure 2 shows the effect of fusing the train-
to a set of Hidden Markov models comprisiegch of the test and test-train scores, bilateral scoring. A linear
hypothesised target speaker's dependent models and a sefligfriminant was used by simply adding the scores. On the
speaker independent models. A score was generated for eacHTgfortant part of the curve, a useful improvement in
the target speakers, which was the percentage of the to%rformance has been achieved. At a 20% miss rate the false
matches achieved by that speakers models. The z-noﬁk’"m probability has been reduced by 40%. The equal error
technique [3] was used to align the scores across speakers. T3i§ Nas aiso been reduced from 8.0% to 6.5%. It is expected
scores were then used to generate a Receiver Operatmﬁt these results could be improved further by using GMMs
Characteristic (ROC) which is shown in the Detection Erropith more modes e.g. 1024 or ?048_' However, the_se results
Trade-off (DET) [9] curve of Figure 1 as the train_testdemonstrate that bilateral scoring is equally applicable to
condition. The results shown are for the 1998 NIST Evaluatioh:‘Idden Markov models and Gaussian mixture models.

data, one session training condition and 30 second test. The

second plot on Figure 1 shows the result of matching the

training speech to the models built on the test speech, test-train.
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Figure 2: GMM Bilateral Results for NIST1998 Evaluation  Figure 3: HMM Multilateral Results for NIST1998 Evaluation
Data, One Session Training, 30 Second Test. Data, Two Session Training, 30 Second Test.

5.1 Multilateral Scoring 7. ACKNOWLEDGEMENTS

Tests on multilateral scoring have been carried out for the twdhe authors would like to thank Harvey Lloyd-Thomas and
session test condition of the NIST 1998 Evaluation using tHeoland Auckenthaler for their help with the speaker recognition
HMM system described in 4.1. During training, separate targekperiments.

models were built for each of the two one-minute training

sessions provided. During recognition two scores were 8. REFERENCES

generated for each of the two target speaker models and the 1 M. Carey et al. A Comparison of Model Estimation
norm technique applied. The results are presented in Figure 3 Techniques For Speaker Verification Proc. ICASSP

as the train-test 1st session and 2nd session DET curves. The 1997 Munich, pp 1083-1086.

third and fourth plots on Figure 3 show the results of matching

the two separate training speech files to the models built on the 2- é I?.aker etsgé' hAga)pIicaFtipn tOf TLafge Vgcgbulakry
test speech, test-train 1st session and 2nd session. ontinuous ch Reegnition 10 10pic and Speaxer
P Identificatiori. Proc. ICASSP 1993 Minneapolis, pp

The third plot shows the effect of multilateral scoring, the 471-474.

fgsing pf the four train-test and t.est-train scores. A linear 3. D. A Reynolds. Speaker Identification and
discriminant was formed by adding the four scores. A Verification Using Gaussian Mixture Speaker Motlels
significant improvement in performance has been achieved for Speech Comm., Aug 1995, pp 91-108.

all parts of the DET curve. The multilateral equal error rate is
5.3% compared to 6.3% for the unlilateral train-test result using
both sessions to train. The results achieved using the
multilateral scoring have also been compared to the bilateral
scoring technique on the same data. Currently, multilateral 5. A. Higgins et al.“Voice Identification using Nearest
scoring performs only marginally better than bilateral scoring. Neighbor Distance Measure” Proc. ICASSP 1993
It is expected that further improvements can be made to the Minneapolis, pp 375-378.

multilateral scoring technique by using more sophisticated data g

J. Oglesby and J.Mason. Rddial Basis Function
Networks for Speaker Recognition Proc. ICASSP
1991 Toronto, pp 393-396.

: _ M. J. Carey and E. S. Parris.Cross Validation in
fusion algorithms. Speaker Recognitién Proc. RLA2C 1998 Avignon, pp

161-164.
6. CONCLUSIONS
7. A. Higgins et al. Speaker Verification Using

In this paper we have discarded the notion of train and test data Randomised Phrase Prompting Digital Signal
in speaker recognition and introduced the idea of multilateral Processing Vol. 1, 1991, pp 89-106.

scoring. This technique has given significant improvements in . M. J. Carey, E. S. Parris and J. S. Bridi& Speaker
performance on the NIST 1998 Speaker Recognition Evaluation Verification System Using Alpha-NetsProc. ICASSP
30 second tests. We have shown that the multilateral scoring 1991 Toronto, pp 396-399.

technique is applicable to speaker recognition systems based on

Hidden Markov models and Gaussian Mixture models. 9. A. Martin et al. The DET Curve in Assessment of
Detection Task Performanite Proc. Eurospeecth997

Rhodes, pp 1895-1898.



