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ABSTRACT

Speaker recognition is usually accomplished by building a set
of models from speech of a known speaker, training data, and
subsequently using a pattern matching algorithm to score the
speech from an unknown speaker, test data.  In this paper we
discard the notion of train and test data in speaker recognition
and introduce the multilateral scoring technique.  This
technique comprises building speaker models on material for
the known speaker and matching the unknown speaker data to
these models, the traditional approach to speaker recognition.
The resultant scores are fused with an equivalent set of scores
produced by matching the known speaker utterance to models
built on the unknown speaker data.  Significant improvements
have been achieved using this technique on the NIST 1996,
1997 and 1998 Speaker Recognition Evaluation data.  Results
are presented for two speaker recognition systems, the first
based on Hidden Markov models and the second based on
Gaussian Mixture models.

1. INTRODUCTION

Speaker recognition is usually accomplished by building a set
of models from speech of a known speaker, training data, and
subsequently using a pattern matching algorithm to score the
speech from an unknown speaker, test data.  In this paper we
discard the notion of train and test data in speaker recognition
and state the problem as follows:

“Given a sample of speech from a known speaker and a second
sample from an unknown speaker determine the probability that
both samples were spoken by the same speaker.”

We assume that we can periodically extract  a sequence of
observations or feature vectors (2 ) from the speech which
contain information about the speakers identity either in the
spectral envelope, usually represented as cepstral coefficients,
and/or the spectral fine structure, that is pitch.  We must then
estimate the likelihood that the training observations from the
known speaker and the test observations from the unknown
speaker are samples of the same distribution.  Three approaches
to this problem suggest themselves; these are,

Model Likelihoods, this is the usual approach where a
parametric model is estimated from the training data and a
pattern matching algorithm is used to match the test
observations to the model, examples of this are Hidden Markov
Models (HMMs) [1][2], Gaussian Mixture Models (GMMs) [3]
or Neural Networks (NNs) [4].

Nearest Neighbours, an alternative to model likelihoods [5], is

to use non-parametric techniques by computing distances using
the training data directly.

Parametric Distance, comparisons are made between the
distributions in the model space, models are built from both the
training and test data and a distance between the models is
computed [6].

In the following first we review the model likelihood approach.
Then we develop the idea of multilateral scoring firstly by
combining recognition scores from test speech matched to
models built on the training data and then from training speech
matched to models built on test data.

2. MODEL LIKELIHOODS

Unilateral Scoring.  This technique draws heavily on the
approach used in speech recognition in which we attempt to
explain a sequence of observations by a sequence of models.  In
speech recognition the sequence of models is the required
output of the system, in speaker recognition it is the probability

of the models given the observations, � �S P 2M _  which is

equated to the probability of the speaker � �S V .  However

typical pattern matching techniques estimate the probability or
likelihood of the model given the observations.  These are
related by Bayes theorem,
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Usually the prior probability of the speaker � �S P M  is assumed

to be the same for all speakers and is disregarded.  However the
estimation of � �S 2  has led to problems in the past.  Noting that
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Now � �S 2 PL

L

_¦  is the sum of the likelihoods for all possible

speakers which normalises the likelihood � �S 2 P M_ .  Hence the

exact evaluation of � �S 2  is clearly impossible.  Therefore two

approximations to this have been proposed.  The first relies on



the observation that � �S 2 P M_  will be small for all but a small

set of similar speakers and that the approximation
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can be made.  The set $  is referred to as the cohort of speaker
M  and the verification score is modified by the cohort score[7].

The other approach is to construct a world or general model 0

which may for example be a speaker independent model in the
case of a Hidden Markov Model system [8].  Then we have
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that is the world model score normalises the speaker’s score.
This has been found to work well in practice and to perform
better than the same systems using cohorts.

The implicit assumption in the foregoing is that the models are
derived from the training data and that the observations are
feature vectors extracted from the test speech.  This naturally
follows from the speech recognition paradigm and is used even
when no model sequence exists for example when using a
GMM or Neural Network.  In fact building models from test
data and matching the training data to these is equally valid.
The only limitation is the practical issue of having a sufficient
amount of data to train the models in each case.  We will refer
to either of these methods as examples of unilateral scoring.
Now we consider how we can use the information available in
the training and test data more effectively.

 3. CROSS VALIDATION

 3.1. Bilateral Scoring

 Informal observation of the performance of speaker verification
systems over the years has led us to conclude that when using
unilateral scoring, impostors are not reciprocal.  That is when
the models built from speech from speaker A are matched to
speech from speaker B they do not give high likelihoods
although speech from speaker A matched to the models built
from speech from speaker B give high likelihoods.  Assuming
that samples of speech from the same speaker always matches
well irrespective of which is used to build the models we have a
mechanism for improving the rejection of false alarms.  To do
this we redefine � �S V  as,

 � � � �S V S P 2 P 2N X X N _ � _

where the subscripts N  and X  indicate the known and

unknown speakers respectively.  Assuming that � �S P 2N X_  and

� �S P 2X N_  are statistically independent we have
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 which can be achieved by adding the log likelihood scores for
the two tests.  These scores may have been derived from a
HMM, GMM, NN or some other pattern matcher.

 3.2. Multilateral Scoring

In many cases more than one sample of data is available for the
known and unknown speaker.  For example, the NIST
Evaluations contain a two-session training condition where the
data for the known speaker has been collected on two separate
occasions.  Traditionally one set of models is built combining
the data from all of the sessions.  However, the bilateral scoring
technique described above can be extended to the multilateral
case to exploit the additional information available from the
different sessions.  Separate models are built for each session of
data from the known and unknown speakers and corresponding
scores produced using the pattern matching technique.  The
multiple scores can then be combined using a data fusion
technique.

4. EXPERIMENTAL CONFIGURATION

The experiments described in the following section were carried
out on the NIST 1998 Evaluation data.  While several different
tests were specified in that evaluation the results given here are
for the 30s test conditions.  The 30s test conditions give enough
speech to build the second set of models on the test data.   There
are three 30s test conditions, one-session train, two-session train
and two-session full train.  There are 250 men and 250 women
target speakers and a total of 2500 tests for each of the
conditions.

The acoustic analysis used in the experiments was as follows.
The data was sampled at 8kHz and was then filtered using a
filterbank containing nineteen filters.  The log power outputs of
the filterbank were transformed into twelve cepstral coefficients
and their first and second derivatives at a frame rate of 10ms.
These coefficients were augmented by energy and delta energy
parameters to give a thirty-nine element feature vector.  The
mean of each of the cepstral parameters was estimated for each
segment of speech and subtracted from each of the feature
vectors.

4.1 Hidden Markov Models

The subword models used were three state Hidden Markov
Models with continuous mixture distributions and a left to right
topology.  No skipping of states was allowed.  Speaker
independent models were built as follows.  A set of subword
models corresponding to the forty-one phonemes of American
English was built using the American-English part of the OGI
Multilingual Corpus. Recognition was then performed on the
training material and the results of the recognition were



compared with the annotation files to give a confusion matrix
between the subword models.

The number of subword classes was then reduced by combining
subword units likely to be confused, reducing the number of
classes to twenty-eight.  The trained classes so combined were
then used to build a new set of speaker independent models
including additional Switchboard data taken from the 1995,
1996 and 1997 Evaluations.  Each model state had three
Gaussian mixture modes.

At training time these speaker independent models were used to
segment the training speech for each of the target speakers and
speaker dependent models were then built from this speech
using the mean estimation model building technique [1].  Each
of the speaker dependent models had three modes per state. A
similar set of models was also built from each of the test files.

4.2  Gaussian Mixture Models

A second speaker recognition system was set up using Gaussian
mixture models (GMMs) [3].  A single speaker independent
GMM was trained using the EM algorithm to maximise the
likelihood of the data given the models.  The GMM had 256
modes and was trained using the same data as the speaker
independent HMMs described above.

Target speaker dependent GMMs were built by adapting the
speaker independent GMM.  Unsupervised Bayesian adaptation
was used to train the speaker dependent GMMs using the
training data of the target speaker.  The variances of the speaker
dependent GMMs were not adapted remaining identical to the
speaker independent variances.  This is the same technique
described above for building the HMM models and proved
more robust and successful than any technique where the
speaker dependent variances were adapted or estimated directly
from the data.

5.  EXPERIMENTS

5.1  Bilateral Scoring

During recognition an unknown speaker’s speech was matched
to a set of Hidden Markov models comprising each of the
hypothesised target speaker’s dependent models and a set of
speaker independent models.  A score was generated for each of
the target speakers, which was the percentage of the total
matches achieved by that speaker’s models.  The z-norm
technique [3] was used to align the scores across speakers.  The
scores were then used to generate a Receiver Operating
Characteristic (ROC) which is shown in the Detection Error
Trade-off (DET) [9] curve of Figure 1 as the train-test
condition.  The results shown are for the 1998 NIST Evaluation
data, one session training condition and 30 second test. The
second plot on Figure 1 shows the result of matching the
training speech to the models built on the test speech, test-train.
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Figure 1: HMM Bilateral Results for NIST1998 Evaluation
Data, One Session Training, 30 Second Test.

The third plot of Figure 1 shows the effect of fusing the train-
test and test-train scores, bilateral scoring.  A linear
discriminant formed by adding the scores was found to be a
near optimal discriminator for the 1996 Evaluation data and was
therefore used for the 1998 tests.  A significant improvement in
performance has been achieved for all parts of the DET curve.
At a 20% miss rate the false alarm probability has been reduced
by a half.  The equal error rate has also been reduced from 8.5%
to 6.9%.

The one session training, 30 second tests described above were
repeated using the 256 mode Gaussian mixture model system.
During recognition an unknown speaker’s speech was matched
to a GMM built from the training data of the hypothesised
target speaker and a speaker independent GMM.  A score was
generated for each of the target speakers by accumulating the
log likelihood ratios for each frame.  The z-norm technique [3]
was used to align the scores across speakers.  Figure 2 shows
the DET curve achieved for the train-test condition.  The second
plot on Figure 2 shows the result of matching the training
speech to the GMM built on the test speech, test-train.

The third plot of Figure 2 shows the effect of fusing the train-
test and test-train scores, bilateral scoring.  A linear
discriminant was used by simply adding the scores. On the
important part of the curve, a useful improvement in
performance has been achieved.  At a 20% miss rate the false
alarm probability has been reduced by 40%.  The equal error
rate has also been reduced from 8.0% to 6.5%.  It is expected
that these results could be improved further by using GMMs
with more modes e.g. 1024 or 2048.  However, these results
demonstrate that bilateral scoring is equally applicable to
Hidden Markov models and Gaussian mixture models.
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Figure 2: GMM Bilateral Results for NIST1998 Evaluation
Data, One Session Training, 30 Second Test.

5.1  Multilateral Scoring

Tests on multilateral scoring have been carried out for the two-
session test condition of the NIST 1998 Evaluation using the
HMM system described in 4.1.  During training, separate target
models were built for each of the two one-minute training
sessions provided.  During recognition two scores were
generated for each of the two target speaker models and the z-
norm technique applied.  The results are presented in Figure 3
as the train-test 1st session and 2nd session DET curves.  The
third and fourth plots on Figure 3 show the results of matching
the two separate training speech files to the models built on the
test speech, test-train 1st session and 2nd session.

The third plot shows the effect of multilateral scoring, the
fusing of the four train-test and test-train scores.  A linear
discriminant was formed by adding the four scores.  A
significant improvement in performance has been achieved for
all parts of the DET curve.  The multilateral equal error rate is
5.3% compared to 6.3% for the unlilateral train-test result using
both sessions to train.  The results achieved using the
multilateral scoring have also been compared to the bilateral
scoring technique on the same data.  Currently, multilateral
scoring performs only marginally better than bilateral scoring.
It is expected that further improvements can be made to the
multilateral scoring technique by using more sophisticated data
fusion algorithms.

6.  CONCLUSIONS

In this paper we have discarded the notion of train and test data
in speaker recognition and introduced the idea of multilateral
scoring.  This technique has given significant improvements in
performance on the NIST 1998 Speaker Recognition Evaluation
30 second tests.  We have shown that the multilateral scoring
technique is applicable to speaker recognition systems  based on
Hidden Markov models and Gaussian Mixture models.
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Figure 3: HMM Multilateral Results for NIST1998 Evaluation
Data, Two Session Training, 30 Second Test.
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