
UNSUPERVISED TRAINING OF HMMs WITH VARIABLE NUMBER OF
MIXTURE COMPONENTS PER STATE

C. Martín*, L. Villarrubia*, F.J.González**, L. Hernández**

*Telefónica I+D, Emilio Vargas 6 Madrid 28043, SPAIN
**ETSI Telecomunicación, Ciudad Universitaria s/n  Madrid 28040, SPAIN

e-mail: cma@tid.es

ABSTRACT

In this work automatic methods for determining the number of
gaussians per state in a set of Hidden Markov Models are
studied. Four different mix-up criteria are proposed to decide
how to increase the size of the states. These criteria, derived
from Maximum Likelihood scores, are focused to increase the
discrimination between states obtaining different number of
gaussians per state. We compare these proposed methods with
the common approach where the number of density functions
used in every state is equal and pre-fixed by the designer.

Experimental results demonstrate that performance can be
maintained while reducing the total number of density
functions by 17% (from 2046 down to 1705). These results are
obtained in a flexible large vocabulary isolated word
recognizer using context dependent models.

1. INTRODUCTION

There are a number of studies about how to train Hidden
Markov Models so that their performance in a Speech
Recognition System [1] is increased. However, although the
designer uses an algorithm that optimizes the models, there is
still a point of non-optimality: the topology.

Traditionally, designers have had to rely on their experience to
decide the topology of the models they used. Usually, the
designer establishes the number of states and iteratively the
models are trained with 1 gaussian per state, with 2 gaussians,
etc. This kind of training gives the same number of density
functions per state for all the models. Nevertheless, the
designer can fix the number of gaussians used in each  state
according with a priori knowledge criteria.

Some research works have been reported looking for a method
to train not only those parameters which are typically
considered (means, variances, transition probabilities), but
also to train the topology of the models. That is the case of the
number of states and the number of density functions used in
each state.

The problem designers have to deal with is to obtain a
compromise between a good resolution in modeling the
underlying distributions and a reasonable number of
parameters such that they can be reliably estimated. There can
also be the limitation in number of gaussian densities imposed
by maximum computational perplexity allowed in the system.
Even though there are enough data to train a huge number of
density functions to finely fit the real distributions the final

system can not afford so many functions due to real-time
limitations.

Usually, to face this situation, the number of mixture
components is increased up to a fixed number, which is
common to all the states of the models. Another possibility is
to use the “tied-mixtures” approach. In such a case, the same
set of mixture components is shared by all the models, or by a
subset of them.

Intuitively, we can see that the optimum situation would be to
use so many mixture components as needed per state, but no
more. The goal is to obtain the “correct” number of gaussians
for each state of the set of models, instead of using the same
number for all of them. This is the purpose of our present
work.

There have been some approximations to this problem, as the
one proposed by Normandin [2], or V. Valtchev [3], who used
Maximum Mutual Information Estimation (MMIE) to
successively split gaussians. Fissore [4] increased the number
of mixture components until it reached a pre-set maximum
value or the average likelihood of the observations in a
evaluation subset decreased.

A new automatic method to obtain variable number of mixture
components per state based on ML is presented in this work.

2. REFERENCE SYSTEM

All the experiments in this work were carried out on the
VESTEL database [5]. We trained 288 left biphones, modeled
with 3-state HMMs, which makes 864 different states. The
training set included 5828 files containing digits, names, cities
and commands. Four different sets of files were used to test.
All of them contain only Spanish names and surnames with
high acoustic similarity.

Set Perplexity Vocabulary
independent

Files

DV448 448 no 2944

IV955 955 yes 1683

IV1573 1573 yes 3037

IV2000 2000 yes 3037

Table 1: Recognition sets



The states were all initialized to 1 gaussian, and reestimated.
Then, they were tied by bottom-up data-driven clustering [6]
in order to reduce the number of states to 341. This tying
stayed fixed across all the different tests.

The reference system was trained with the classical procedure,
that is, incrementing in every iteration the number of mixture
components in all the states. Results for various numbers of
mixture components were obtained.

The reference system results are summarized in Table 2. The
recognition results improve as long as the number of mixture
components is increased. It can be observed that the
improvement is more significant when the number of
gaussians is low. In fact there is almost no difference between
models with 6 or 7 gaussians per state. This means that this
number of components is sufficient to adequately train our
system with the given training database. This point can be
considered as an upper limit.

3. UNSUPERVISED MIX-UP TRAINING
PROCEDURE

The basic flow of Unsupervised Mix-Up Training Procedure is
represented in Figure 1 and can be explained as follows:

1. The mix-up method starts with a set of models, all
of them with one gaussian distribution per state.

2. The models are trained with Maximum Likelihood
(Baum-Welch) in order to estimate the parameters
that define every model.

3. The training database is aligned using the current
models so that boundaries and average frame
probability are obtained for every state of the
models in the database.

4. According to the selected mix-up criterion, some
states increase the number of mixture components,
that is, some gaussians are split. Besides, a
minimum number of frames per mixture is
required to avoid the problem of undertraining.

5. If a maximum number of gaussian distributions is
reached stop the training, otherwise back to step 2.

The alignment is made on the state level, since they are the
minimal elements we are considering to change the number of
mixture components. This alignment is obtained by applying
recognition to every file with a special grammar, which forces
to recognize exactly what is said in the file being processed.
Similar procedures can be applied to more complex parts of
the models (e.g. the whole model), or to a set of them.

In previous works it has been shown that using a splitting
criterion based on the local behavior of each mixture
component (as the mixture weight count [2]) does not work
properly. So a global behavior of the whole set of mixtures of
each state is considered in the present contribution. The

motivation of this approach is to obtain the best possible
modeling of a state by using the correct number of gaussians.

Figure 1. Variable mixture training procedure scheme

3.1 Frame Probability Average

The first and most intuitive splitting criterion is the standard
frame probability average (FPA) of each state. To obtain this
measure, the total probability given by each segment assigned
to the considered state is normalized by the number of frames
it lasts.
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Where NOs  is the number of examples of state s (times it
appears), no matter the length of every one. Or  represents the
r th observation of the state s, which is composed of a number
of frames, given by the Viterbi-based segmentation.
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Then, according to this measure, in the K worst states the
number of mixture components is incremented by one. The
number K may be chosen so that a fixed percentage of the
states is incremented or, on the other hand, it can be derived in
each iteration from a threshold from the worst state.
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In Table 2 results are presented for this criterion. It can be
seen that the performance of the Frame Probability Average is
worse than in the reference system.

A close analysis of this training procedure revealed that the
main problem related to this splitting criterion is that this
score does not distinguish between states with similar Frame
Probability Average but very different number of training
examples. This fact produces that states with not many
examples can be chosen to be split instead of others with
slightly higher score but much more examples. Another effect
detected was that some states with similar FPA and number of
occurrences showed very different improvements after
increasing the number of gaussians.

Trying to overcome with these problems some different
measures are proposed. The first idea is to use the
improvement of the scores instead of the scores themselves.
Besides, the average of all the training examples of one state
is obtained, without normalizing by the number of frames.

3.2 Delta of Frame Probability Average

All the states are incremented in the first iteration. In
successive iterations difference on Frame Probability Average
on iteration t and t-1 is taken. That is:

∆FPA t FPA t FPA ts s u s u( ) ( ) ( )= − − 1
Eq. 3

Now, a new gaussian density function is added in the K states
with best score. The delta score is obtained for a given state
only when a new gaussian is added to it, and that is the
quantity used until that ∆FPAs  becomes one of the K best
scores. To remark this, the index t  stands for the current
iteration, while tu  stands for the last iteration in which the
given state was modified.

The results for this measure are included in table 2. Although
this training criterion outperforms the Frame Probability
Average criterion, it does not reach the reference system.
Therefore, we moved to the State Probability Average.

3.3 State Probability Average

Once the boundaries are obtained, for every state, the average
probability per observation is calculated. That is, every time a
specific state appears in the aligned training database, the total
probability obtained for that segment is accumulated as Eq. 4.
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Again, the K worst states are incremented, with the same
considerations applicable to K. Table 2 shows that State
Probability Average achieves a performance which falls below
the reference system. However, it can be seen that it depends
greatly on the initialization. When initialized with 2 gaussians
per state (see * in table 2) the system obtains a significant

improvement, although not being able to equal the reference
system. This fact reveals that this measure relies excessively
on the number of frames each state is assigned to. Thus, an
important number of states with relatively few assigned
frames remains unsplit. So, when forcing a minimum number
of two gaussians, the performance significantly improves.

3.4 Delta of State Probability Average

In this case, the delta scoring is applied to State Probability
Average, with the same considerations as in ∆FPA
applicable to the method for obtaining the delta score. That is:

∆SPA t SPA t SPA ts s u s u( ) ( ) ( )= − − 1
Eq. 5

In every iteration, the K states with best scores are
incremented. This criterion, as ∆FPA does, imposes at least
two gaussians in every state. The so trained system
outperforms the reference system in almost all the cases. In
fact, results show that performance can be maintained while
reducing the total number of density functions by 17% (from
2046 down to 1705).

In Figure 2 and Figure 3 we can see the resulting distribution
of gaussians among the states for the case of 4 and 7 gaussians
per state ratio. As we might hope, there are a number of states
that do not need more than 2 or 3 mixture components to be
well defined, so it is more efficient to distribute those density
functions among the rest of the states.
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Figure 2 Distribution of gaussians. 4 gauss/state ratio
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Figure 3. Distribution of gaussians. 7 gauss/state ratio.



4. SUMMARY AND FUTURE WORK

In this work, we have presented different approaches to train
HMMs with variable number of mixture components per state.
Four splitting criteria were used trying to efficiently model the
state real distribution. All of these methods are based on the
Maximum Likelihood Estimation criterion.

The experiments show that the criterion that best accomplishes
with this task is the one based on Delta of State Probability
Average, which manages to maintain the performance
although the global number of mixtures of the whole set of
models is reduced.

That is, the hint is to improve the match between the whole
state and its real distribution, instead of improving each
gaussian locally. We found also that it is important to
increment the number of mixtures specially in those states that
have improved most since the last increment. Anyway,
minimum modeling detail is necessary to guarantee a good
enough performance.

Now, we are in the process of evaluating this training method
on triphones-based speech recognition system. Also, new
measures are being studied to model more efficiently the state
distributions.
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Criterion Total # of Mix. ratio mix/state Recognition rate  per Set (%)

DV448 IV955 IV1573 IV2000

1364 4 (all) 91.30 88.71 84.72 82.88

Fixed number 1705 5 (all) 91.54 89.54 85.81 84.00

of mix. comp. 2046 6 (all) 92.05 89.78 86.04 84.29

2387 7 (all) 92.05 89.60 86.14 84.62

Frame Prob. Average 1364 4.00 90.90 88.35 83.73 81.89

Delta Frame Prob. Av. 1000 2.93 90.66 88.29 84.29 82.52

1357 4 91.17 88.59 84.85 82.98

1367 4.00 88.01 84.55 80.11 78.14

State Prob. Av. 1415 4.15 87.87 84.79 80.14 78.27

1414 * 4.15 90.12 87.70 83.77 81.99

1357 4.00 91.81 89.42 85.61 84.03

1415 4.15 91.88 89.30 85.71 84.06

Delta of State Prob. Av. 1705 5.00 91.98 89.78 86.10 84.62

2011 5.89 92.46 89.66 86.47 84.66

2387 7 92.60 89.78 86.24 84.59

Table 2. Results for different criteria and number of mixture components. Asterisk (*) means that the system was
initialized with 2 gaussian density functions, instead of one function.


