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ABSTRACT system can not afford so many functions due to real-time
limitations.

In this work automatic methods for determining the number of . . . .
. . . Usually, to face this situation, the number of mixture
gaussians per state in a set of Hidden Markov Models are L . S
. . . o .~ components is increased up to a fixed number, which is
studied. Four different mix-up criteria are proposed to decide .
. . o .“cammon to all the states of the models. Another possibility is
how to increase the size of the states. These criteria, deriv o . ;

. Lo . 0 use the “tied-mixtures” approach. In such a case, the same

from Maximum Likelihood scores, are focused to increase thg . .
t of mixture components is shared by all the models, or by a

discrimination between states obtaining different number o?e

. sn#glset of them.

gaussians per state. We compare these proposed methods wi

the common approach where the number of density functiongtuitively, we can see that the optimum situation would be to

used in every state is equal and pre-fixed by the designer. use so many mixture components as needed per state, but no
] more. The goal is to obtain the “correct” number of gaussians

Experimental results demonstrate that performance can B& o5ch state of the set of models, instead of using the same

maintained while reducing the total number of density,ymper for all of them. This is the purpose of our present
functions by 17% (from 2046 down to 1705). These results afgq k.

obtained in a flexible large vocabulary isolated word

recognizer using context dependent models. There have been some approximations to this problem, as the
one proposed by Normandin [2], or V. Valtchev [3], who used
1. INTRODUCTION Maximum Mutual Information Estimation (MMIE) to

successively split gaussians. Fissore [4] increased the number
There are a number of studies about how to train Hiddesf mixture components until it reached a pre-set maximum
Markov Models so that their performance in a Speechalue or the average likelihood of the observations in a
Recognition System [1] is increased. However, although thegvaluation subset decreased.

designer uses an algorithm that optimizes the models, there is ) ] ) ]
still a point of non-optimality: the topology. A new automatic method to obtain variable number of mixture

components per state based on ML is presented in this work.
Traditionally, designers have had to rely on their experience to
decide the topology of the models they used. Usually, the 2. REFERENCE SYSTEM
designer establishes the number of states and iteratively the
models are trained with 1 gaussian per state, with 2 gaussiaAd, the experiments in this work were carried out on the
etc. This kind of training gives the same number of density ESTEL database [5]. Wisained 288 left biphones, modeled
functions per state for all the models. Nevertheless, the&ith 3-state HMMs, which makes 864 different states. The
designer can fix the number of gaussians used in each sté@ining set included 5828 files containing digits, names, cities
according witha priori knowledge criteria. and commands. Four different sets of files were used to test.

] All of them contain only Spanish names and surnames with
Some research works have been reported looking for a methagiy acoustic similarity.

to train not only those parameters which are typically
considered (means, variances, transition probabilities), but

also to train the topology of the models. That is the case of the|  gqt Perplexity| Vocabulary Files
number of states and the number of density functions used in independent

each state.

The problem designers have to deal with is to obtain a Dva48 448 no 2944
compromise between a good resolution in modeling the | V955 955 yes 1683
underlying distributions and a reasonable number of

parameters such that they can be reliably estimated. There caf V1573 1573 yes 3037
also be the limitation in number of gaussian densities imposed| |\/2000 2000 yes 3037
by maximum computational perplexity allowed in the system.

Even though there are enough data to train a huge number of Table 1 Recognition sets
density functions to finely fit the real distributions the final



otivation of this approach is to obtain the best possible

The states were all initialized to 1 gaussian, and reestlmate;a.ode“ng of a state by using the correct number of gaussians.

Then, they were tied by bottom-up data-driven clustering [6
in order to reduce the number of states to 341. This tying
stayed fixed across all the different tests.

The reference system was trained with the classical procedure,
that is, incrementing in every iteration the number of mixture
components in all the states. Results for various numbers of
mixture components were obtained.

HMM 1MIX

The reference system results are summarized in Table 2. The
recognition results improve as long as the number of mixture
components is increased. It can be observed that the
improvement is more significant when the number of
gaussians is low. In fact there is almost no difference between
models with 6 or 7 gaussians per state. This means that this
number of components is sufficient to adequately train our
system with the given training database. This point can be
considered as an upper limit.

3. UNSUPERVISED MIX-UP TRAINING
PROCEDURE

The basic flow of Unsupervised Mix-Up Training Procedure is
represented in Figure 1 and can be explained as follows:

BAUM-WELCH
TRAINING

ALIGNMENT
(FORCED RECOGNITION

!

| MIX-UP DECISOR |

1. The mix-up method starts with a set of models, all
of them with one gaussian distribution per state. m
2. The models are trained with Maximum Likelihood ) ] ] o
(Baum-Welch) in order to estimate the parameters Figure 1. Variable mixture training procedure scheme
that define every model.
3. The training database is aligned using the current 3.1 Frame Probability Average
models so that boundaries and average frame
probability are obtained for every state of the The first and most intuitive splitting criterion is the standard
models in the database. frame probability average (FPAQf each state. To obtain this
measure, the total probability given by each segment assigned
4. According to the selected mix-up criterion, some  to the considered state is normalized by the number of frames
states increase the number of mixture components, it |asts.
that is, some gaussians are split. Besides, a
minimum number of frames per mixture is EPA= 1 1 length(O") P(0r|S)
required to avoid the problem of undertraining. NO, g lengthO") Zl [
5. If a maximum number of gaussian distributions is O assigned ts

reached stop the training, otherwise back to step 2.

Eqg. 1

The alignment is made on the state level, since they are thgnhere NO, is the number of examples of statdtimes it
minimal elements we are considering to change the number ghpears), no matter the length of every odé.represents the
mixture components. This alignment is obtained by applying® gpservation of the state which is composed of a number

recognition to every file with a special grammar, which forcegy frames, given by the Viterbi-based segmentation.
to recognize exactly what is said in the file being processed.

Similar procedures can be applied to more complex parts
the models (e.g. the whole model), or to a set of them.

In previous works it has been shown that using a splittin
behavior of each mixtur

criterion based on the local
component (as the mixture weight count [2]) does wotk

of O" ={o}} i=,12.. lengt{0")

Eg. 2

ghen, according to this measure, in tkeworst states the

number of mixture components is incremented by one. The

properly. So a global behavior of the whole set of mixtures dfumberk may be chosen so that a fixed percentage of the

each state is considered in the present contribution. T

ralates is incremented or, on the other hand, it can be derived in

each iteration from a threshold from the worst state.



In Table 2 results are presented for this criterion. It can bienprovement, although not being able to equal the reference
seen that the performance of the Frame Probability Average sgstem. This fact reveals that this measure relies excessively
worse than in the reference system. on the number of frames each state is assigned to. Thus, an
) . . important number of states with relatively few assigned
A c_Iose analysis of this tral_nlng pr(_)cedur_e r_evee}led that t,hﬁames remains unsplit. So, when forcing a minimum number
main problem re!at_ed t_o this splitting crlterl_on is f[hat thlsof two gaussians, the performance significantly improves.
score does not distinguish between states with similar Frame
Probability Average but very different number of training3.4 Delta of State Probability Average
examples. This fact produces that states with not many
examples can be chosen to be split instead of others with this case, the delta scoring is applied to State Probability
slightly higher score but much more examples. Another effeéverage, with the same considerations as &FPA
detected was that some states with sinfiBA and number of applicable to the method for obtaining the delta score. That is:
occurrences showed very different improvements after ASPA()= SPA( )~ SP& t1)

increasing the number of gaussians.
g 9 Eq. 5

Trying to overcome with these problems some different

measures are proposed. The first idea is to use the every iteration, theK states with best scores are
improvement of the scores instead of the scores themselvéscremented. This criterion, a8FPA does, imposes at least
Besides, the average of all the training examples of one stateéo gaussians in every state. The so trained system
is obtained, without normalizing by the number of frames.  outperforms the reference system in almost all the cases. In

. fact, results show that performance can be maintained while
3.2 Delta of Frame Probability Average reducing the total number of density functions by 17% (from

All the states are incremented in the first iteration. Ir?046 down to 1705).
successive iterations difference on Frame Probability Averagg Figure 2 and Figure 3 we can see the resulting distribution
on iterationt andt-1is taken. That is: of gaussians among the states for the case of 4 and 7 gaussians
AFPA (t)= FPA(t,) - FPA( t,~1) per state ratio. As we might hope, ther_e are a number of states
that do not need more than 2 or 3 mixture components to be
Eq.3 well defined, so it is more efficient to distribute those density

. . . ) functions among the rest of the states.
Now, a new gaussian density function is added irktls¢ates

with best score. The delta score is obtained for a given state 100 —

only when a new gaussian is addeditoand that is the o

quantity used until that\FPA, becomes one of thi best % 801-------- B I
scores. To remark this, the inddx stands for the current E 604 ----- LML,
iteration, while t, stands for the last iteration in which the ©

given state was modified. é 404 ----- T
The results for this measure are included in table 2. Although 2 204 - .- .. R
this training criterion outperforms the Frame Probability |_| m |‘|
Average criterion, it does not reach the reference system. 0 e e L m ==
Therefore, we moved to the State Probability Average. 0 1 2 3 4 5 6 7 8 9 10
3.3 State Probability Average Number of mixture components

Once the boundaries are obtained, for every state, the average Figure 2 Distribution of gaussians. 4 gauss/state ratio

probability per observation is calculated. That is, every time a
specific state appears in the aligned training database, the total

probability obtained for that segment is accumulated as Eq. 4. 60
1 lengt(O") % 50t-ql}--------"-"-""-"-"-"-"--"-----
SPA= P(of9) Ll || P
O' assigned ts g otmimy----------- -
Eq. 4 g 20 L I I
. . ) Z o+ {4t btnmemr -------------
Again, the K worst states are incremented, with the same """"“"n“-n---n o
considerations applicable t&. Table 2 shows that State 0+ L L B L B L L B
Probability Average achieves a performance which falls below 1 4 7 10 13 16 19 22 25 28
the reference system. However, it can be seen that it depends Number of mixture components

greatly on the initialization. When initialized with 2 gaussians ) o ) .
per state (see * in table 2) the system obtains a significant Figure 3. Distribution of gaussians. 7 gauss/state ratio.



4. SUMMARY AND FUTURE WORK

In this work, we have presented different approaches to train |, Rabiner and B-H Juang, “Fundamentals of Speech
HMMs with variable number of mixture components per state.

Four splitting criteria were used trying to efficiently model the

state real distribution. All of these methods are based on
Maximum Likelihood Estimation criterion.

tie Normandin Y., “Optimal Splitting of HMM Gaussian
Mixture Components with MMIE Training”,
ICASSP-95, pp. 449-452.

The experiments show that the criterion that best accomplishes

with this task is the one based on Delta of State Probability.
Average, which manages to maintain the performance

although the global number of mixtures of the whole set
models is reduced.

That is, the hint is to improve the matbbtween the whole
state and its real distribution, instead of improviegch
gaussian locally. We found also that it is important

increment the number of mixtures specially in those states thgt

have improved most since the last incremeAhyway,

minimum modeling detail is necessary to guarantee a good

enough performance.

. . . . 6.
Now, we are in the process of evaluating this training method
on triphones-based speech recognition system. Also, new
measures are being studied to model more efficiently the state

distributions.
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Criterion Total # of Mix. | ratio mix/state Recognition rate per Set (%)
Dv448 | IV955 | IV1573 | 1V2000
1364 4 (all) 91.30 | 88.71| 84.72 | 82.88
Fixed number 1705 5 (all) 91.54 | 89.54 | 85.81 | 84.00
of mix. comp. 2046 6 (all) 92.05 | 89.78 | 86.04 | 84.29
2387 7 (all) 92.05 | 89.60 | 86.14 | 84.62
Frame Prob. Average 1364 4.00 90.90| 88.35 83.73 81.8p
Delta Frame Prob. Av. 1000 2.93 90.66| 88.29 84.24 82.5p
1357 4 91.17| 88.59 84.85 82.98
1367 4.00 88.01| 84.55 80.11 78.1p
State Prob. Av. 1415 4.15 87.87| 84.79 80.14 78.2y
1414 * 4.15 90.12| 87.7(Q 83.77 81.9p
1357 4.00 91.81| 89.47 85.61 84.0B
1415 4.15 91.88| 89.3( 85.71 84.0p
Delta of State Prob. Av. 1705 5.00 91.98| 89.79 86.1( 84.6p
2011 5.89 92.46| 89.66 86.47 84.6p
2387 7 92.60| 89.78 86.24 84.5

Table 2 Results for different criteria and number of mixture components. Asterisk (*) means that the system was

initialized with 2 gaussian density functions, instead of one function.



