
Improved Robust Speech Recognition Considering Signal Correlation
Approximated by Taylor Series

Jia-lin Shen, Jeih-weih Hung, Lin-shan Lee
Institute of Information Science, Academia Sinica

Taipei, Taiwan, Republic of China
jlshen@iis.sinica.edu.tw

ABSTRACT

In this paper, an improved mismatch function by

considering signal correlation between speech and

noise is proposed to better estimate the noisy

speech HMM’s. A linearized model based on

Taylor series expansion approach is used to

approximate the proposed mismatch function. The

parameters of the noisy speech HMM’s can be

estimated more precisely by combining the

parameters of the clean speech and noise HMM’s in

the log-spectral domain or cepstral domain.

Experimental results show that improved robustness

for speech recognition in the presence of white

noise as well as colored noise can be obtained.

1. INTRODUCTION

The mismatch between training and testing

environments is the major cause for the

performance degradation of many recognition

techniques. Quite several approaches were

proposed to adapt the HMM’s trained by clean

speech to a new environment [1-5]. Apparently, the

mismatch function for the additive noise and the

clean speech is non-linear in the log-spectral

domain or cepstral domain, and was very often

expressed as [1]

         ) )exp()exp( log(     nsx += ,        (1)

where x, s and n denote the log-spectral

representation of the corrupted noisy speech, clean

speech and noise, respectively. The cepstral

representation can be easily obtained by applying

the discrete cosine transform (DCT). The noisy

speech HMM’s can thus be derived based on the

above non-linear mismatch function. In Parallel

Model Combination (PMC) method [1], the clean

speech HMM’s are transformed from the cepstral

domain to the linear-spectral domain, combined

with the parameters of the noise HMM’s in that

domain, and then inversely transformed back to the

cepstral domain for recognition. As an alternative,

the above non-linear mismatch function can be

approximated by a linearized model using the

Taylor series expansion (TSE) approach [2-4], so

that the clean speech and noise HMM’s can be

directly combined in the log-spectral domain or

cepstral domain. In this way, the recognition can be

performed in matched training and testing

conditions using the estimated noisy speech

HMM’s.

In our previous study [5], we found that a

correlation term between speech and noise will

appear in the power spectrum of the noisy speech

signal, which is ignored in the widely used

mismatch function as shown in equation (1). This

correlation term can be ignored in the estimation of

the mean of noisy speech based on the assumption

of zero-mean of noise. However, this assumption is

not necessarily suitable especially for the short-term

spectral analysis for speech recognition [5]. In this

paper, it is proposed to model the correlation term

between speech signals and noise, at least to some

extent, and tries to obtain a tractable solution with a

linearized model based on Taylor series expansion



approach [6]. The above equation (1) can be

modified to

    )( log    llll nsrnsg(s,n)x ++== ,   (2)

where )( exp ss l =  and )( exp nnl =  mean the

power spectrum of the clean speech and noise,

respectively. The first two terms in equation (2) are

in fact the same as in equation (1), while the last

term represents the correlation, with r being a

correlation factor. Based on the modified mismatch

function proposed here, the parameters of the noisy

speech HMM’s can be estimated more precisely in

terms of the parameters of the clean speech and

noise HMM’s.

2. ESTIMATION OF MODEL  PARA-
METERS IN NOISY ENVIRONMENTS

As mentioned above, the corrupted noisy speech

can be represented by a mismatch function

composed of clean speech and noise. Based on the

mismatch function, the mean and variance of the

corrupted noisy speech can be estimated if the

Gaussian distributions are assumed to model the

speech.

2.1 Modified Mismatch Function

In the short-term spectral analysis for speech

recognition, the power spectrum of the noisy speech,

||X(w)||2, can be derived from the power spectrum

of clean speech and noise as shown in the

following :
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As a result, the power spectrum of the noisy speech

can then be expressed as shown in equation (2),

where sl=||S(w)||2 and nl=||N(w)||2, respectively,

and it can be noted that the absolute value of the

correlation factor r shown in equation (2) is located

between 0 and 2.

2.2 Estimating Parameters by Taylor Series
Expansion (TSE)

From [6], if the mismatch function g(s,n) in

equation (2) is sufficiently smooth near the point

(µ s,µ n), with µ s and µ n representing the mean of

clean speech and noise in the log-spectral domain,

respectively, then the mean and variance of noisy

speech can be estimated in terms of the mean and

variance of s and n :
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Here the clean speech and noise are assumed un-

correlated and the Taylor series expansion of order

2 is used [5]. The formulations for Taylor series

expansion with higher order can refer to [2].

Therefore the estimated mean and variance of the

noisy speech signals can be obtained according to

equations (3)(4) :
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As a comparison, the estimated parameters of

noisy speech HMM’s using Parallel Model

Combination (PMC) approach based on the

proposed mismatch function are expressed as [5] :
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where ρ 1, ρ 2 and ρ 3 are weighting parameters. Note

(7)



that the composition process is performed in the

linear-spectral domain and then the corresponding

mean and variance in the log-spectral domain can

be obtained accordingly [1] :
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Based on the mismatch function, the

parameters of the noisy speech HMM’s can be

derived either from the direct estimation by TSE in

equations (5)(6) or from the indirect estimation

using PMC approach as shown in equations (7)(8).

However, no matter what approaches are adopted,

the more accurate the mismatch function, the more

precise the estimated parameters.

2.3 Modified Mismatch Function for
Dynamic Features

The proposed mismatch function can be also

applied to dynamic features and the corresponding

estimated mean and variance for noisy speech

HMM’s can be therefore obtained :
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where � denotes the delta operation and a simple

difference over a window width, k, is used. In

addition, C is a function of signal-to-noise ratio

(SNR) with 10/10SNRC = .

3. EXPERIMENTAL RESULTS

3.1 Speech database

The speech database included 4 sets of 1345

isolated syllables in Mandarin Chinese produced by

two male speakers. 3 sets were used for training and

1 for testing. The recognition rates quoted are the

average of the rates for each of the speakers. All the

speech data were obtained in an office-like

laboratory environment. They were low-pass

filtered, digitized by an Ariel S-32C DSP board

with sampling frequency 16kHz. After end-point

detection was performed, 20 ms Hamming window

was applied every 10 ms with a pre-emphasis factor

of 0.95. 14-order mel-frequency cepstral

coefficients derived from the power spectrum

filtered by a set of 30 triangular band-pass filters

were used for each frame. In order to include

additive noise in the speech database, the noise

from NOISEX92 database was added to clean

speech for different level of SNR’s. In addition,

noise HMM’s for different levels of noise were

individually trained, composed of one state and one

mixture per state.

3.2  Experiments

In the first experiment as shown in Table 1 in the

presence of white noise, the recognition rates were

48.33%, 14.42% and 2.01% for 30dB, 20dB and

10dB of SNR, respectively, which were

immediately increased to 69.81%, 44.98% and

24.16%, respectively, using the PMC method. In

addition, these rates were improved to 78.66%,

65.65% and 42.60% for 30dB, 20dB and 10dB of

SNR, respectively, using the previously proposed

TSE methods [2-3]. The PMC method based on the

proposed correlated mismatch function led to the

recognition rates of 78.36%, 59.26% and 36.80%

for 30dB, 20dB and 10dB of SNR’s, respectively.

Here the correlation factor r was set to 1.

Furthermore, the TSE approach based on the

proposed correlated model provided the recognition

rates up to 78.29%, 66.17% and 44.16% for 30dB,

20dB and 10dB of SNR’s, respectively. It can be

found that direct estimation using TSE approach

outperforms indirect estimation using PMC

approach. Moreover, the recognition rates can be

improved especially under low SNR conditions

when the signal correlation between speech and

noise is considered. Also, in the case of 30 dB the

(8)



recognition rates were very near to those using

matched HMM as shown in the last row of Table 1.

This is probable the reason why the correlated

model becomes not helpful.

Type 30dB 20dB 10dB

Clean HMM 48.33 14.42 2.01

PMC 69.81 44.98 24.16

Correlated PMC 78.36 59.26 36.80

TSE 78.66 65.65 42.60

Correlated TSE 78.29 66.17 44.16

Matched HMM 80.67 71.15 49.74

Table 1. Recognition rates for different versions of
models in the presence of white noise.

As shown in Table 2, the recognition rates

under F16 noisy environments were degraded to

66.25%, 29.81% and 8.55% for 30dB, 20dB and

10dB of SNR, respectively. Similarly, the PMC and

TSE approaches can provide significant

improvements and TSE outperforms PMC in any

cases. Moreover, the compensation based on the

proposed modified mismatch function can be

further improved. The results listed in Table 2

indicated that TSE compensation based on the

correlated model gave the recognition rates up to

83.72%, 75.17% and 52.08% for 30dB, 20dB and

10dB of SNR, respectively. Improvements under

low SNR conditions were observed as compared to

original TSE approach. We believe that the

estimation of noisy speech HMM’s can be further

improved if more precise estimation of correlation

between speech and noise can be applied.

4. CONCLUSION

In this paper, we proposed a modified mismatch

function by considering signal correlation for

speech signals in the presence of additive noise.

Based on the mismatch function, the parameters of

the noisy speech HMM’s can be estimated more

precisely and improved robustness can be therefore

obtained.
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Type 30dB 20dB 10dB

Clean HMM 66.25 29.81 8.55

PMC 78.74 58.22 25.87

TSE 83.64 74.57 50.93

Correlated TSE 83.72 75.17 52.08

Matched HMM 84.54 81.04 69.22

Table 2. Recognition rates for different versions
of models in the presence of F16 noise (colored
noise).


