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ABSTRACT

This paper investigates a projection-based likelihood
meaure that improves speech recognition performance
in noisy environment. The projection-based likelihood
measure is modi�ed to give the weighting and projec-
tion e�ect and to reduce computational complexity. It
is evaluated in sub-model based word recognition using
semi-continuous hidden Markov model with speaker in-
dependent mode. Experimental results using proposed
measure are reported for several performance factors:
additive noise and noisy channel environment, various
noise signals, and combination with other compensation
method. In various noisy environments, performance
improvements were achieved compared to the previously
existing methods.

1. INTRODUCTION

The performance of a speech recognition system is usu-
ally degraded in open environments since there is always
a mismatch between the training and testing environ-
ments. Therefore, the problem of speech recognition in
a noisy environments has greatly attracted researcher's
attention. A number of alternative methods to minimize
these e�ects have been proposed in the literature and
used with varying degrees of success. Some methods,
such as spectral subtraction and �ltering approach, try
to estimate the underlying \clean" speech, whereas oth-
ers, such as composite hidden Markov model(HMM)'s,
attempt to incorporate noise statistics into the refer-
ence models themselves. On the other hand, a more
programmatic approach such as distance measures or
probability calculation focuses on the characteristics of
the speech signal that are the least sensitive to degrada-
tion due to noise. For such an approach, the projection
operations have been applied to mitigate this condition
mismatch. The basic concept of these measures relies on
the observations by Mansour and Juang[1] that norms
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of truncated cepstral sequences derived from LPC anal-
ysis are perturbed by more additive white noise than
other descriptors of the feature space. They have pre-
sented a family of distortion measures based on the
projection between LPC cepstral vectors. Carlson and
Clements[2] have shown how the projection measure can
be exploited as a weighted measure in a recognition
system using continuous density HMM. Tung et.al.[3]
have proposed projection-based group delay approach
that combines the advantages of the projection mea-
sure and those of the group delay spectrum. However,
the above researchers have mostly focused on projec-
tion operation. Therefore, previous likelihood measure
did not give weighting e�ect by lifter, although Tung.
et.al[3] have used weighted cepstrum using group delay
spectrum. In this paper, previous projection-based like-
lihood measure is modi�ed to give the weighting and
projection e�ect. The proposed method is used with
semi-continuous HMM.
The organization of this paper is as follows. Weighted

projecion-based likelihood measure is described in Sec-
tion 2. Section 3 explains recognition system and fea-
ture analysis as well as its experimental results. Finally,
conclusions are given in Section 4.

2. WEIGHTED PROJECTION-BASED

LIKELIHOOD MEASURE

2.1. Projection-based Distance Measure

Empirical observations have revealed the followings[1]:
1) at a given global SNR, the norm reduction on cep-

stral vectors with larger norm is generally less than on
vectors with smaller norm.
2) lower order coe�cients are more a�ected than

higher coe�cients.
3) the direction of the cepstral vector is less suscepti-

ble to noise contamination than the norm of the vector.
Based on these observations, they have proposed a

family of distance measures based on the projection be-



tween the two cepstral vectors being compared. In their
approach the shrinkage of the norm is compensated us-
ing the following distortion measure[1].

d1(�) = (ct � �cr) � (ct � �cr); (1)

where ct and cr are test and reference observation, re-
spectively, and projection value � is determined from
the orthogonality principle as follows

� =
ct � cr

cr � cr
: (2)

The robustness property of the angle between the clean
cepstral vector and its noisy version is calculated using
the following distortion measure[1].
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where cos� is de�ned by

cos� =
ct � cr

jctjjcrj
: (4)

Also the distortion measure is modi�ed using the prop-
erty that cepstral vectors with larger norms are more
robust to additive white noise than those with smaller
norms[1]. That is

d3 =
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: (5)

2.2. Projection-based Likelihood Measure

Similar to the derivation of the projection-based distor-
tion measure, a scale factor can be incorporated into
the HMM state distribution or, equivalently, into the
Gaussian likelihood score to compensate for the reduc-
tion in the vector norm. The parameters of each state
in the model are represented by a continuous Gaussian
probability density function of the form.
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or its log-likelihood result:

log f1(ct) = (ct � �i;t�i)
TCi

�1(ct � �i;t�i)
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where Ci, and �i are covariance matrix and mean code
vector of i-th state, respectively. Similar to (2), the
optimal �i;t values is determined as follows
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TCi
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: (8)

With this value of � and without considering the last
two terms, the log-likelihood becomes the following.
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2.3. Weighted Projection-based Likelihood

Measure Using Weighted Cepstrum

The weighted cepstrum distance measures have been
suggested to improve the recognition rate for distorted
speech[4, 5]. Therefore, to utilize the robust property of
weighted cepstrum, the projection-based likelihood mea-
sure is weighted by the liftering function w. However,
the weighted function w is canceled out because of co-
variance matrix, and returned to the original equation.
That is
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Therefore, in our method covariance matrix is not con-
sidered and the likelihood measure is modi�ed using the
two previous distortion measures given in (3) and (5).
First, we used likelihood measure of normalized

weighted cepstrum.
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where, Ci
N is the covariance matrix of normailzed vec-

tor. Second, norm weighted likelihood measure similar
to (5) was exploited, where covariance matrix is multi-
plied by weight function and so, the weight is canceled
out. However, weight of projection value remains.
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So, these likelihood measures can have weighting e�ect
as well as projection e�ect. Also, they require less com-
putation than the previous methods.

2.4. Implementation Issues

For a training procedure with semi-continuous HMM,
several issue are involved in the practical use of the
measure. The probability calculation of the observa-
tion is composed of two steps. First step is to choose
some nearest code vectors using weighted projection dis-
tortion measure of section 2.1. Second step is to calcu-
late weighted projection-based likelihood measure corre-
sponding to the distance measure of the �rst step. How-
ever, these methods are used only with static observa-
tion, and for temporal observations, standard euclidean
measure is used, because di�erential information dos not
restore the directional information. To train the mod-
els, it is necessary to prepare for the initial codebook
which are generated from the same measure by LBG al-
gorithm. Especially for l2 measure of (11), normalized
observations are used to train the codebook.

3. EXPERIMENTAL RESULTS

3.1. Database and Recognition System

In this experiments Korean 14 digits(digit and command
words for phone call) and 50 isolated words were used in
speaker independent mode. For 14 digit database(DB)
100 noise free tokens of male speakers were used for
training, whereas 40 di�erent noise-contaminated tokens
of each word were used for testing. Fifty words DB was
composed of 150 noise free tokens and 42 di�erent noise-
degraded ones of each word for training and testing.
To generate features, speech was sampled with 8kHz

for 14 digit DB and 10kHz for 50 word DB, and pa-
rameter analysis was performed on each 20ms frame

of speech with Hamming window at every 10ms. For
each speech frame, 18 or 20 channel �lter bank spec-
tra with mel-scaled frequency depending on the sample
rate were obtained. Each speech spectral vector was
then transformed to a cepstral vector. In addition a
set of time di�erential features were generated and used
as independent observations. Also, di�erential energy
and di�erential-di�erential energy were used for energy
feature vector.
To generate the noise contaminated speech of 14 digit

DB, various signals including exhibition hall, computer
room, and white noise were added to the speech wave-
form. Fifty word DB were recorded in telephone chan-
nel, and similarly various noise signals were mixed to
the speech.
In all experiments, the words were modeled by an

context-dependent phoneme using three states, multiple
mixture, semi-continuous HMM with a diagonal covari-
ance matrix. To model the background noise that is
assumed to be present at start and end of an utterance,
two noise models with two state were used. Each one
was concatenated to front and end of speech model. The
HMM structure was left-to-right with no skip states.

3.2. Results and Discussion

Table 1 shows the experimental results using 14 digit
DB. To compare the weighting e�ect of liftering, we
used euclidean(euc) and root power sum(rps) weight
function. The \(euc)" and \(rps)" use the same stan-
dard likelihood measure. Only the di�erence between
them is the chosen code vectors using weight function.
Compared to the previous measure of \l1" that has no
weighting, the proposed normalized and norm weighted
measure of \l2(rps)" and \l3(rps)" improved the perfor-
mance. These two measures showed comparable perfor-
mance, however \l3(rps)" of norm weighted case gave a
little better recognition rate in most cases. Therefore,
from now on we'll consider only norm weighted \l3(rps)"
for experiment.
To see the usefulness of the proposed method, we ob-

served the reognition results after model compensation.
Table 2 shows the recognition results combined with par-
allel model combination(PMC) [6]. It signi�cantly im-
proved the performance compared to standard \(rps)"
measure and showed similar or a little better reognition
rate than \PMC(rps)". From the result we can see the
proposed measure can be combined with other process-
ing method. However, the performance improvement
was not signi�cant, because the performance has been
already improved by the compensation method, and its
processing a�ects the projection likelihood measure.
We also tested in the noisy channel environment. We

used 50 word database recorded in telephone channel.



Table 1: Recognition results using weighted projection-
based likelihood measures, where \(euc)" and \(rps)"
means standard likelihood measures using code vec-
tor selection by weighting, \l1" represents previous
projection-based likelihood measure, and \l2(rps)" and
\l3(rps)" describes the proposed measures using rps
weight.

(euc) (rps) l1 l2(rps) l3(rps)

clean 99.82 98.93 99.46 99.11 99.46

Exhibition

Hall(dB)

20 91.25 98.39 96.43 96.43 97.50

10 63.04 91.07 85.18 88.75 90.00

0 15.89 49.64 44.46 50.18 50.71

Computer

Room(dB)

20 95.36 96.07 97.14 96.61 96.79

10 80.89 86.96 90.00 88.75 90.36

0 35.18 51.07 60.54 50.18 60.00

White

Noise(dB)

20 67.50 92.32 87.86 95.00 96.43

10 38.04 75.89 59.11 87.86 92.32

0 4.46 34.29 16.61 48.21 53.75

Table 2: Recognition results after applying PMC,
where \(rps)" indicates standard likelihood measure,
\PMC(rps)" represents standard likelihood measure
with model compensation, and \PMC l3(rps)" de-
scribes combination with the proposed measure.

(rps) PMC(rps) PMC l3(rps)

Exhibition

Hall(dB)

20 98.39 97.50 97.32

10 91.07 88.39 92.50

0 49.64 38.39 56.79

Computer

Room(dB)

20 96.07 98.04 97.50

10 86.96 92.68 97.50

0 51.07 57.68 66.61

White

Noise(dB)

20 92.32 97.50 96.68

10 75.89 93.04 93.04

0 34.29 69.11 69.29

To compensate for channel characteristic, cepstral mean
subtraction(CMS) technique was used. Table 3 shows its
recognition results. It shows that the proposed measure
improved the performance compared to the standard
and previous measure. The performance improvement
was 21.34% at 10dB of exhibition hall noise, although
a little degradation was observed compared to standard
\rps" measure. In other noise cases, it showed consistent
improvement.

4. CONCLUSION

This paper proposed and evaluated a weighted
projection-based likelihood measure for semi-continuous
HMM's. The proposed measure improved the perfor-
mance of speaker independent, isolated word recogni-

Table 3: Recognition results using mel-cepstrum with
CMS for telephone channel, where \(euc)" and \(rps)"
indicates standard likelihood measure, and \l1" and
\l3(rps)" represents previous and the proposed measure,
respectively.

(euc) (rps) l1 l3(rps)

clean 97.95 97.90 97.81 97.29

car noise(dB)
20 91.24 96.33 94.62 96.95

10 74.05 86.00 64.14 85.48

road-side

noise(dB)

20 94.29 95.52 96.38 96.05

10 63.00 70.33 71.86 72.05

white

noise(dB)

20 96.76 96.71 94.43 97.52

10 76.19 74.05 78.00 78.05

tion in the presence of several noise types and channel
environment compared to previous method. It doesn't
require much computation and its usefullness was com-
�rmed through the combination of the other noise pro-
cessing like PMC.
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