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perform what we propose to call “audio-visual scene
ABSTRACT analysis”, in reference to the domain of “auditory scene

_ _ _ _ analysis” [2] which focuses a great deal of interest in the
This paper deals with the improvement of a noisy speegy|d of audition.

enhancement system based on the fusion of auditory and visual
information. The system was presented in previous papers afidtwo previous papers [5, 6], we presented a new system
implemented in the context of vowel to vowel and vowel tgledicated to telecommunications or man-machine
consonant transitions corrupted with white noise. Its principleommunication, in which we attempt to realize a first
consists in an analysis-enhancement-synthesis process basetegéhnical implementation of the idea that the acoustic
a linear prediction (LP) model of the signal: the LP filter isSignal of a given speaker couytdp outin noise thanks
enhanced thanks to associative tools that estimate LP cleafi@dthe visual input. In these first works, the audiovisual
parameters from both noisy audio and visual information.  fusion/enhancement process was realized by a simple
) _ ) linear associator obtained by linear regression between
The detailed structure of the system is reminded and we fOCHéisy audiovisual data and clean audio data tuned from a
on the improvement that concerns precisely the associatq'éaming corpus. The system was tested on vowel to
basic neural networks (multi-layers perceptrons) are usggvel [5] and vowel to consonant (VCV) [6] single-
instead of linear regression. It is shown that in the context gbeaker sequences and a quite good intelligibility gain
VCV transitions corrupted with white noise, neural networkgyas obtained on the vocalic parts of the signals, while
can improve the performances of the system in terms e results on consonants were mitigated. This lead us to
intelligibility gain, distance measures and classification tests.suspect the simplicity of the linear associator. In this
paper, we present an improvement of the system with the
1. INTRODUCTION use of non-linear associators for the fusion/estimation

It has been shown that there exists a complementarﬂg)cesf' Thus, ba5|c(j: .netura:jl r]:ettr\:vorllgs (mult|—laye_rs
between audition and vision for egch perception9]. percep ro?ts) ?);e_usg 'Ths Sath 0 f e ;nlga:r r_egr(iss[[on.
Thus, visual cues can compensate to a certain extent figw results obtained wi oth informal listening tests

deficiency of the auditory ones [12]. This explains tha‘clmd objective measures (spectral distances, spectra

the fusion of auditory and visual information has met 8Iassification) are presented.
2. STRUCTURE DESIGN

great success in several speech aafbins, principally
in speech recogtion in noisy environments [1, 11].

We test here a slightly different idea, which is that th&N€ System is essentially based on the linear prediction
visual input could allow toenhancethe audio input Model (LP) [8] (fig. 1). First, an LP analysis is
corrupted in acoustic noise. This idea has a theoretid@ffformed on the noisy signal. We obtain spectral

basis. Recent work by Driver and colleagueggest that Parameters and the noisy speech residual signal is
the sensorial input in one modality can focus th&Xtracted by filtering through the inverse LP filtg(2).

attention of another modality on a specific part of itd Nen. the noisy spectral parameters are combined with
input. This has been demonstrated in [4] for visuaF—he video ones into an audiovisual vector so as to obtain

proprioceptive-tactile interactions, and in [3] for audio€Stimated "cleaned” spectral parameters (see section 3).

visual interactions. In this last case, Driver presen@”a”y* enhanced gech is synthesized bitéring the

various experiments in which the coordination of spatigfsidual signal through the LP filta/A(z) derived from
attention across audition and vision enables the subje cleaned” parameters. The whole processing is
to select sights and sounds from a common source irPg/formed frame-by-frame in the perspective of a
selective listening task. These data suggest that audf@ntinuous speech appiton.

visual interactions could comprise a module enabling to
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Figure 1: Structure of the noisy speech enhancement system

amplitude taken for 50 equally spaced values on the
3. ASSOCIATORS upper-half unit circle. The audio signals are sampled at
) ) ) 16 kHz and the coefficients are calculated on 512
The estimation of the cleaned parameters is a ClaSSI%h]mes (32 ms, which involves an audio window
“trained association” problem. In our previous workspyerlap of 12 ms to synchronize with the 20 ms video
linear regression was chosen for its simplicity and itSeriod). To obtain the filter 1/4z) from the "cleaned"
efficiency. Its principle is smply to estlmate .each aUd'%pectraI parameters, we process an inverse FFT on the
output parameter as a linear combination of thgy,ared linearly-scaled coefficients, and apply a 20-order

audiovisual input parameters. The matfit of the |evinson procedure on the resulting estimated
coefficients of the linear combination are calculated by tocorrelation coefficients [8]

minimizing the mean square erre=M,.M-Mo, where

M, andMg are two matrix concatenating a large numbeg o The corpus

of sets of respectively input and corresponding output

parameters extracted from a training speech corpus. The corpus, already used in [6], consists HCV,CV,
Beside_s, _neural netwo_rks have been widely used f%e,qitj?/,nﬁ(]e.sgtitsrsv?thbi)r/] ?22 ?)ﬁ)gsa}bg;aswgt\[épir'ek\’/vg%r? ql.
classification tasks, like in the field of &mh Gng jtem of each of the 96 possible stimulk4w6) is
recognition, including ecently audiovisual recogion  ,qeq guring the training of the associators and another
[11]. They are theoretically able to approximate any noRs,q is reserved for the tests described in section 5. With
linear function. That is why we choose to use them i ;qjeq acquisition period of 20 ms, we obtain an amount
order to improve the audio-visual association accuracy BY anout 2500 audiovisual vectors for a series of 96
enabling non-linearities between the input-output space;mii (about 25 frames by stimuli).

The networks used in this work are classical multi-layers

perceptrons (MLP) based on error gradien ;

backpropagation [10]. They have one hidden layer an%j’B' Experimental protocol

the neuronal threshold functions are classical sigmoida/e consider only the case of an additive white noise. In
The backpropagation algorithm applied on the learningrder to sufficiently generalize the process with respect
data is a very basic one, the only special tuning being tte@the noise level, the training of the associators is done
"momentum" option: the adjustment of each weight takegith input audio corrupted at different levels. The results
in account its previous modification during the trainingliscussed here are obtained with the use of two different

iterations thanks to a forgetting coefficient. learning/processing conditions for both linear and
neuronal associators. In the first one, the stimuli frames
4, EXPERIMENTATION are presented at signal to noise ratios (SNR®},df8,
12, 6 and 0 dB. In the other one, the stimuli frames are
4.1. Video and audio inputs presented at SNRs of 6, 0, -6, -12, and -18 dB. During

) o L ) . the enhancement process, each frame is submitted to a
Video stimuli consist in three basic geometric parametefigear discriminant analysis in order to decide its

describing the speaker’s lip shape, namely internal widiytegorization in the “small” or “strong” noise condition
(A), height (B) and area (S) of the labial contour. Thesg, that we can choose the corresponding associator. It
parameters are automatically extracted every 20 Mgs heen shown that this linear discriminant analysis
thanks to the ICP face processing system [7]. could separate stimuli with SNR lower than O dB or

Concerning the audio LP parameters, it has been shofigher than 6 dB with less than 1% errors. Between 0
that the best performances of the system were obtaind . 6 dB.' the wo small/strong noise” associators
with a 50-coefficient spectral representation consisting 8f0vide quite similar outputs.

the logarithmic values of the/A(z) 20-order filter



5. EXPERIMENTAL RESULTS In each case, that is 40 or 200 neurons, the performances
of the MLP significantly overcome the linear associator
5.1. Informal listening tests ones for strong levels of noise (until SNR = 6 dB). Below
0 dB, the results seem independent of the number of
In [5], it was observed that the linear associator allowatkurons. This is confirmed by figure 3, which displays
a significant enhancement of vocalic transitions on #he same distances as a function of the number N of
large SNRs scale (from 18 to —18 dB). In [6], where theeurons of the hidden layer. At smaller levels of noise,
VCV corpus was used, this efficiency was somehowhe gain gets smaller if N is small (it is even negative for
reported on the vocalic parts of the stimuli while alR0 neurons ato or 18 dB). A quite larger number of
consonants stayed poorly intelligible. New informaheurons seems necessary to obtain better results than the
listening tests using the MLP reveal that this associattinear regression at small levels of noise.
seems to allow a better global enhancement than the
linear associator at any level of noise: when listening 6
successively two occurences of a stimuli provided by bot

associators, the one enhanced by the MLP i 5 RSB
systematically preferred. This seems to be due first to a (dB)
improvement of the enhancement of vocalic sections & , .18

Besides, a significant improvement on consonants i
obtained for the [p, b] sections, showing that the non
linear relation between closed lip shapes and acoust
features can be exploited by the neural network
Unfortunately, other consonants are not significantly
enhanced (even sometimes degraded, which was alrea
observed with the linear associator), showing anew th
difficulty to exploit poorly visible articulatory gestures.

Mean Itakura Distance (dB)

5.2. Distance measures linear MLP MLP MLP MLP MLP
reg. 40 80 120 160 200

The ltakura distance [8] has already been used in [5, 6]
to measure the difference between the enhanced &Figure 3: Mean ltakura distance between enhanced and clean
clean spectra. Rather small distances were obtainggkctra of the test corpus for the linear regression and MLPs as
compared to those between noisy and clean spectsgunction of the number of neurons of the hidden layer.

Hence, the procedure does produce a significant .
enhancement and the new plot in figure 2 allows 3S @ summary, a relatively small number N of neurons

compare the results obtained with the linear associalfth respect to data size allows a quite more efficient
and the MLP for two values of the hidden layer neurorfUtPut estimation than the linear regression in terms of
number (40 and 200). The distances are calculated aFRectral distances. This is obtained on a large noise level

averaged on the complete test corpus (96 stimuli) for @€ (below /12 dB). As N increases, this gain of
different SNRs &, 18, 12, 0, -6, -12, -18 dB). performances is spread to small noise levels.

5.3. Gaussian classification test

used in this test are two selected frames near each vocalic
nucleus of each stimulus for the vowels, and near each
burst for the consonants. For each level of noise, we
obtain 576 vowel and 384 consonant items (2 selected
frames, 3 vowels and 2 consonants occurrences per
stimulus, 96 stimuli), that is to say 144 per vowel, and 64
per consonant. Since the number of data is small
SNR (dB) compared to the number of audio parameters, we reduce
0 1 1 1 1 w w ! it from 50 to 10 by means of a principal components
18 -12 -6 0 6 12 18clan analysis (PCA). Both the PCA and the gaussian audio
classifier parameters are determined with learning data
presented at 3 levels of noise, (18, 12 dB). Figure 4
Figure 2: Mean Itakura distance between enhanced and cledisplays the classification scores obtained separately on
spectra of the test corpus for the linear regression and MLRewels and consonants for three conditions: noisy audio,
with 40 and 200 neurons. audio enhanced with the linear regression, and audio

6 : To evaluate the system in a recognition task, gaussian
5 ¢—linear reg. classification tests have been realized separately on the 4

—a— MLP 40 vowels and the 6 consonants of our stimuli. The items
4

—&— MLP 200

Mean Itakura Distance (dB)




enhanced with the MLP. In this last case, the number © compare with [5], formal perceptive tests remains to
neurons is chosen not too great (120) while allowing tHee done. This is part of our future works, as much as the
best global scores. All scores are normalized betweenaBsociation of such audiovisual methods with classical
and 100%, with 0% corresponding to a random choi@coustic ones (e.g. multi-microphones systems).

and 100% to perfect recognition.
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Figure 4: Gaussian classification test scores

The difference of the scores in the noisy and enhanced
conditions confirms the efficiency of the system. The
gain of the MLP with respect to the linear associator is
anew notable. In particular, the network is able to clearly
improve the “reshaping” of the vowel spectra, while the
regression was shown to be already efficient in that case
[5, 6]. The scores obtained on consonants are lessg
impressive, even if a gain is also observed from linear
regression to the MLP. All these results confirm the
observations of section 5.1.

6. CONCLUSION

We have presented in this paper the improvement of an 7.
original noisy speech enhancement system introduced in
[5]. This system is based on a filtering process
exploiting some fusion/estimation process from both
auditory information and lip contour parameters. The 8.
improvement concerns the use of neural networks
(multi-layer perceptrons) for the fusion/estimation
process, instead of linear regression which was used in ™
[5] to show the feasability of the study.

It has been shown that in the context of VCV transitions
corrupted with white noise, neural networks can improve
the performances of the system in terms of intelligibility
gain, distances measures and classification tests. The
gains observed on consonants are mitigated: only the [p
b] lip closures seem to be exploited correctly, which is a 11,
new (even not to much surprising) result compared to
previous one obtained with the linear associator. Hence,
the improvement of consonants stays the key-point of
this work. The good surprise comes from the vowels:
their enhancement is significantly improved by the MLP  12.
although the performances of the linear regression for
the vowels were already quite good.

10.
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