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ABSTRACT been suggested to model the state and word durations. In

. . . the bounded state duration modeling [6] the state duration
A duration modeling scheme and a speaking rate compensa-

tion technique are presented for the HMM based connecte s lower anq.upper bounded by two bounding parameters in
. . : g . he recognition phase.
digit recognizer. The proposed duration modeling technique . .
: ; - . Another approach to treat the duration problem is to
uses a cumulative duration probability. The cumulative du- ST
. - . -~ _model the state duration implicitly such as the Ferguson
ration probability also can be used to obtain the duration

. : _model [7], the expanded state HMM [8][9], the second-
bounds for the bounded durgtlon modellng. One of the ad order HMM [10] and the inhomogeneous HMM (IHMM)
vantages of proposed technique is that the cumulative du'[ll]
ration probability can be applied directly to the Viterbi de- ‘

X . o : In this paper, we propose a method using the cumula-
coding procedure without additional postprocessing. There- . . S
. " tive duration probabilities to model the state and word dura-
fore, it rules the state and word transition at each frame. To

. . tions explicitly and a speaking rate compensation technique.
alleviate the problems due to fast or slow speech, a mOdI'The cumulative duration probability is measured by the par-
fication to the bounded duration modeling which accounts P y yhe p

. : ) ; tial sum of the conventional explicit duration probabilities.
for speaking rate is described. The experimental results o o . . e
L . . herefore, we call it “cumulative duration probability” in
Korean connected digit recognition show the effecuveness,[his paper

of the proposed duration modeling scheme and the speaking The proposed duration modeling technigue is described

rate compensation technique. in section 2. In section 3 the modification to duration mod-
eling which reduces the effect of speech rate is presented.
1. INTRODUCTION The experimental settings and results are described in sec-

tion 4.
In connected digit recognition task, the inserted words are

observed for unrealistically short durations, while the previ-
ous or next word of the deleted words is observed for abnor-
mally long durations. Such misalignments of word duration
sequences can be reduped by modeling of 'the state and V\(org_l_ Cumulative Duration Probability
durations. Speech rate is another problem in connected digit
recognition task. It has been known to have a significant ef- In explicit duration modeling, the probabilit; (w, i, )
fect on recognition [1]. Furthermore, the duration modeling Which denotes a discrete distribution of the state duration
technique cannot play a proper role when the input speechn statei of wordw for 7 frames is defined as the following:
is too fast or too slow.

Several approaches have been proposed to model thd’s (w4, 7) = Pris; = (w, ) for r framesgs; = i, si41 # il,

2. DURATION MODELING USING CUMULATIVE
DURATION PROBABILITY

state and word durations explicitly or implicitly. In ex- D, 1)
plicit duration modeling, the duration probabilities are mea- Z Py(w,i,7) = 1, 2)
sured from the training data or several distribution densi- —

ties, which are usually incorporated in postprocessing as th%here D
weights of multiple candidates [2][3]; Parametric distribu- ’
tion [4][5] using Gaussian, Poisson or Gamma density has

s Is the largest state duration allowed. Since it
should be added at the end of a state or a word, it can-
not be applied to the Viterbi decoding procedure. Thus an
This work was supported by Korea Science and Engineering Founda- 2dditional postprocessor is needed. This implies that the
tion (KOSEF) 95-0100-22-01-3 in 1997. state and word durations do not play a role in the forward




recognition path and that they do not rule the state and wordduration modeling. The cumulative duration probability is a
transition at each frame. To overcome such problems wemonotonically decreasing probability. Therefore, the lower
propose a method using the cumulative duration probability and upper bounds are easily estimated by applying proper
that can be combined directly to the Viterbi decoding pro- thresholds. LeD L (w, i) and DU, (w, ) be the lower and

cedure. R
The cumulative state duration probabil®(w, i, 1) is
defined by

Py(w,i,7) = Pr[sty1 = s¢ = (w, ) for  frame$. (3)

It is measured as the following:

A~

P,(w,i,7) = Pr[transition accurs after frame$ (4)
D

= > Piw,i,d). (5)

d=1+1

It is the partial sum of the explicit duration probabilities

upper duration bounds for state®f word w, andD L, (w)

and DU,,(w) be the lower and upper duration bounds for
word w. They are estimated by applying the thresholds
THsyr, THsy, THwyr andT Hyy to the state and word
cumulative duration probabilities, whefeH s, andT Hgyy
denote the lower and upper thresholds for the state duration
boundsI'Hy ;, andT Hy y represent the lower and upper
thresholds for the word duration bounds, respectively.

3. SPEAKING RATE COMPENSATION

In this section, we present a speaking rate compensation

which can be calculated from the training speech data ortechnique for the bounded duration modeling. The proposed
estimated from the several parametric distributions. The technigue performs the recognition process twice. From the

cumulative word duration probabilitﬁ’(w,f) is obtained

from the same way as we mentioned before.

recognition results obtained in the first recognition process,
the speaking rate is estimated. Then, the lower and up-

The Viterbi decoding algorithm is modified to utilize per duration bounds are adjusted to the speed of the input
both the cumulative state and word duration probabilities. speech and the second recognition process is performed.

When only two state transition paths are considered for con-

The average duration of each woff(w) and the av-

venience, a modified Viterbi decoding algorithm within a erage duration of the total words are estimated from the

word is given by
Jt(w,i) =

max[0;_1(w, i) - a}’; -

i,

As(wa i: Ti) . pw (wy Tw),
-1 (w,i—1)-a¥ ;- (1= Py(w,i—1,7-1)) -
Py(w, )] - b (Oy), (6)

where,d; (w, 7) is the Viterbi score in state of word w at

training data.

timet, a’; denotes the state transition probability from state The duration rate of each wofdR (w) is defined by

2y

i to statej of wordw, b¥ (O;) is the observation probability
in state; of word w at timet, andr; andr,, represent the
duration in state and in wordw, respectively. For the first

D,
D(w) = P,(w,t)-1, 1<w<W, (8)
e
D = & wz::l D(w). (9)
DR(w) = @. (10)

state of each word where the word transition is considered,The value ofDR(w) is greater than 1 for long words and

a modified Viterbi decoding algorithm is of the form:
5t(w71) =

- w - -
lg})aé}%v[(stfl(wv 1) a1 Ps(wv 1,7—1) Pw(vaw)a

A ~

Si—1(v, N) - a¥y nyy - (1= Py(v,N,7n)) -

(1= Py(v,1))] - b7 (O4), (7)

where, W denotes the total number of wordg,is the num-

ber of states in word) anday; v, represents the transition

probability from the last stat® to the virtual stateV + 1,
which means the word transition occurs.

2.2. Bounded Duration Model

less than 1 for short words. Using the duratibriw) of
each recognized word in the first recognition process, the
expected average duratidn of the input speech and the
expected duratioD (w) of each word is estimated as the
following:

D = MedianD(w)/DR(w)],
w € {recognized words  (11)
Dw) = D-DR(w), 1<w<W, (12)

where, Mediah] denotes the Median average. We use the
Median average, rather than normal average, so that the ex-
pected average duratidn is not affected by wrong words
which usually appear for abnormally long or short frames.

The cumulative state and word duration probabilities can be For the second recognition process, we choose narrower du-
used to estimate the lower and upper bounds for the boundedation bounds than those for the first recognition process.



These duration bound3L(w, i), DUg(w, ), DL, (w) and 11

DU,,(w) are adjusted using the expected durafidfw) of 1L
each word. THgfgf

DLy(w,i) = DLy(w,)) + (D(w) - Dw)/N, @3)  z°[| '\

DU,(w,i) = DU,(w,i) + (D(w) — D(w))/N, (14) 2 ol | el

DLy(w) = DLu(w)+(D(w)=Dw), (15  Zoq

DUy(w) = DUy(w) + (D(w) — D(w)), (16) & 0.4

0.3f
Then, the second recognition process is performed with tt 0.2} [P DUs(w.i)
adjusted duration bound3L(w, %), DUs(w, %), D Ly (w) o1l __.';(Wi'-r-)_‘ 7
andDU,,(w) which account for the speaking rate. THay, L TN ‘ ‘
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4. EXPERIMENTAL SETTINGS AND RESULTS (@)
The experiments on Korean connected digit recognition we L1
performed using the DigitDBdatabase which consists of .t
5,169 connected digit strings from 70 males and 50 female 0.9}
The data was partitioned into 4,064 strings from 50 male 0.8t
and 40 females for training, and 1,105 strings from 20 male Co7}
and 10 females for testing. The vocabulary was made up 0.6l
30 models; 29 models for 11 digits (the digit “0” is read §0_5, Ry (w,7)
in two ways in Korean) and 1 model for the silence. Th 4
29 digit models were designed to cover the coarticulatio 0sl
effects due to previous and next digits. The transitions b ' Dlw (W) DU (W)
tween the 29 digit models were ruled by the word pair grarr 0.2
mar. i  Rwr)

The speech signals were down-sampled from 16 KHz t "o YT, TS = 50

8 KHz and pre-emphasized by a factor of 0.95. Three fe: DURATION
ture vectors, 12 mel-frequency cepstral coefficients (MFCC
12 delta MFCC, and delta energy with delta-delta energ (b)

were computed every 10 ms using a 20 ms Hamming wir
dow. The band pass lifter (BPL) was used in cepstral dis
tance measure.

An example of the cumulative duration probability anc
the duration bounds obtained from it is shown in Figure 1
The cumulative state and word duration probabilities rep-
resent the continuity of corresponding state and word. In

figure 1 the value of the cumulative duration probability is ) .
aiqmost 1 for a low duration period, which mak(gs a stateyandcedure' CD+BD is the combmeq _scheme of BD anq CD.
' CD-A means that the state transition matdxof HMM is

a'word remain as the.y are. It decreaseg gradually and for anot used in CD. CD+BDA denotes that BD is added to CD-
high duration period it is close to 0, which encourages the

. A. BD+SRC represents that the speaking rate compensation
state and word transitions. . . .
: . . technique is applied to BD scheme. In BD+SRC scheme,
Several duration modeling schemes using the cumula-

tive state and word duration probabilities and a speakingg;gt tgsshr?ilgoﬁro?gfgglsesvé% It; € dﬂrag'gg t;?;[nds T the
rate compensation technique were examined. The experi- 9 b SL = UI0 SU —

mental results are shown in Table 1. In Table 1, BD1 de- 0.001, THw g, = 0.93andT Hyy = 0.001. For the second
. . . recognition process, they wetleHs;, = 0.95, THgy =

notes the bounded duration modeling with only one set of0 005 THerr — 0.8 andT Hvorr — 0.01

state and word duration bounds for all states and words. BD " o' = I WL = V- wy = L

means the bounded duration modeling in which the duration The recqgmuon regults n Tgble 1. show that the pro-.
posed duration modeling techniques increase the recogni-

1The DigitDB database has been distributed by the Korea Advanced tON accuracy approximately by 9-5% compared to that of
Institute of Science and Technology (KAIST). the conventional HMM, and approximately by 3.4% com-

Figure 1: An example of the state and word duration model-
ings: (a) the state duration of the 2nd state of the word “/i/”
(2), (b) the word duration of the word “/gong/” (0)

bounds are obtained from the cumulative duration probabil-
ities. CD represents that the cumulative state and word du-
ration probabilities are applied to the Viterbi decoding pro-




Table 1: Experimental results for several duration modeling
schemes using the cumulative duration probability and the

speaking rate compensation technique

Duration | Recognition| Number of errors
modeling || accuracy[%]| Ins | Del | Sub
Baseline 83.60 354 | 64 | 228
BD1 89.76 99 | 164 | 319
BD 93.47 83 | 98 | 190
CD 93.10 73 | 101 | 218
CD+BD 93.01 67 | 107 | 223
CD-A 93.12 103 | 79 | 209
CD+BD-4A 93.07 94 | 84 | 216
BD+SRC 94.28 51 | 85 | 189

(2]

(3]

(4]

pared to that of the BD1 scheme. Among the proposed dura- [5]

tion modeling schemes, the best performance was achieved
by the BD. In the BD, several sets of thresholds proba-
bilities were used to measure the duration bounds and we

carefully tuned them, while one set of threshdltdd s, =
0.95, THsy = 0.001, THw = 0.93 andTHWU =

0.001 were used in other BD schemes. Although such a
special tuning was not conducted in the proposed speak-
ing rate compensation technique (BD+SRC), the BD+SRC

Recognition SystemsProc. ICASSPvol. 1, pp. 612-
615, May 1995.

Lalit R. Bahl, Frederick Jelinek and Robert L. Mer-
cer, “A Maximum Likelihood Approach to Continu-
ous Speech RecognitiorlEEE Trans. Pattern Anal-

ysis and Machine Intelligenc®ol. 5, no. 2. pp. 179-

190, Mar. 1983,

Lawrence R. Rabiner, Jay G. Wilpon and Frank K.
Soong, “High Performance Connected Digit Recogni-
tion Using Hidden Markov Models[EEE Trans. on
ASSPRvol. 37. no. 8, pp. 1214-1225, Aug. 1989.

M. J. Russel and R. K. Moore, “Explicit Modeling of
State Occupancy in Hidden Markov Models for Auto-
matic Speech RecognitiorProc. ICASSPvol. 1, pp.
5-8, Mar. 1985.

David Burshtein, “Robust Parametric Modeling of Du-
rations in Hidden Markov Models,Proc. ICASSP
vol. 1, pp. 548-551, May 1995.

6] H.Y.Gu, C.Y. Tseng and L. S. Lee, “Isolated- Utter-

technique achieved the 0.8% of further improvement com- [7]

pared to the BD scheme.

5. CONCLUSION

We have presented a duration modeling using a cumula-
tive duration probability and a speaking rate compensation
technique. Since the proposed duration modeling scheme is
combined to the Viterbi decoding procedure, an additional

(8]

postprocessor is not needed. The speaking rate compensaq9]

tion technique is applied to the bounded duration modeling

and it reduces the errors due to fast or slow speech.

From the experimental results for the duration model-

ings, we can note two facts. First, when the cumulative du-[10]

ration probability is combined to the Viterbi decoding pro-
cedure, an additional duration modeling such as the bounded
duration modeling cannot achieve further enhancement of
recognition accuracy. Second, the performance of the du-
ration modeling using the cumulative duration probability

is better when the state transition matdxof HMM is not
applied.
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