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ABSTRACT

In this paper, a time domain approach for speech recognition is
developed. The nonstationary autoregressive (AR) hidden
markov model (HMM) with gain contour is proposed for
modeling the statistical characteristics of the speech signal. The
parameter of nonstationary AR model was modeled by the
polynomial function with linear combination of M known basis
functions. In this proposed model, speech signal is blocked by
samples into fixed-length frames and modeled by nonstationary
AR model controlled by markov switching sequences at each
frame. Given the HMM parameter set of the speech, the gain-
adapted recognition algorithm is developed for speech
recognition.

1. Introduction

The autoregressive hidden markov model (ARHMM) [1,2] is
useful methods to represent the statistical characteristics of the
clean speech in speech recognition and speech enhancement. In
the conventional ARHMM, individual states are assumed to be
stationary stochastic sequences. This stationary-state assumption
appears to be reasonable when a state is intended to represent
piece-wise stationary segment of speech. Since speech sounds,
such as fricative, glides, liquids, and transition regions between
phones, reveal the most notable nonstationary nature [3,4], we
can not expect to obtain the better performance by the
conventional methods based on the above assumption. Another
basic issue arising from ARHMM for speech recognition is
matching problem of the energy contour of the signal to the
energy contour of the model for that signal. The energy
matching is usually attained by appropriate normalization but is
not applicable when only noisy speech signals are available [5].
In this letter, for energy matching we propose a training
algorithm of nonstationary ARHMM with gain adaptation and
gain adapted speech recognition algorithm.

To overcome these problems, the nonstationary ARHMM with
gain adaptation for gain normalized clean signals are design
using maximum likelihood (ML) estimates of the gain contours
of the clean training sequences. The parameter of nonstationary
AR model was modelled by the polynomial function with linear
combination of M known basis functions. Then, the speech
signal is blocked by samples into fixed-length frames and
modeled by nonstationary AR model with frame varying
polynomial function controlled by markov switching sequences
at each frame. Our model is formally very similar to the trend
HMM [3.4], but it is designed to handle the speech signal at the
frame level, where it is represented by the signal, rather than
dealing with feature vectors directly. Also, for M=0, the

proposed model become to conventional ARHMM [5]. The
proposed method for speech recognition is combined with ML
estimates of the gain contours of the clean test signals, obtained
from the given clean signals, in performing recognition using
the maximum a posteriori decision rule.

We have evaluated our nonstationary ARHMM method with
M=1 on a base of ten isolated Korean digits with three versions
of each digit pronounced by seven male speakers. In speech
recognition, the proposed method was compared with a
conventional ARHMM method with gain-normalized approach
and with gain adaptation.

2. Nonstationary AR-HMM with gain adatation
for clean speech

Let y= y,,n=1,.,T be the sequence of clean signal
Y, =l .(r-1N+1=t<nN and

Sy, E{l,...,L , be a sequence of states corresponding to y. Let

vectors, where

g={gn,n=1,..,T , be a sequence of gain factors, or a gain

contour, for the signal y.

Then, at n-th frame speech signal conditioned on state i is
expressed as a linear combination of its past values plus an
excitation source with gain contour, as

Wt = 3 %Bli(my(t-k +g, et n-1N+1=<1=nN.
k=1m=0
(M

where B;; m is the state-dependent time-varying coefficients,
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yt=1=yt-1yt-2L yt—p ~, ¢ - is the excitation

source with state-dependent variance o-,-2 n , N and n is the

frame length and number, respectively, and g, >0 forallnisa

gain term to take into account the mismatch between training
data and testing data for the clean speech models.

We now turn our attention to the problem of estimating the
time-varying coefficients in our model. In order to gain insight
into the behavior of the coefficients and to make the estimation
problem tractable. We choose to model them as a linear
combination of M known basis functions:

P M 2
Bk n = ZBk,mfmn ()

m=0
where f,, n represents the mth basis function and Bl: n the

weight associated with the basis function.



Here, we choose M=1 and our basis functions to be such that

fo n :l,
fin=n 1=n=T. 3)

Therefore, (1) may be rewritten by vector form as

yt=B'yt-1+g,-et. n-1N+1<t<nN 4)

where B' = B{| B, By B, L B}, B}, and
v t=0)=[((n=)N+1=1). mf(n-1)N +e-1)L .

y((n— 1)N+ t —p), ny((n— l)N +1- p)]T

In essence, the model with time-varying coefficients has been
transformed into one with time-invariant weights. The problem
is now reduced to one of estimating 2P time-invariant
parameters that completely characterize the behavior of the
coefficients. It should be noted that the choice of basis functions
is by no means limited to polynomials.

The likelihood of the observation sequence y under the model
A and gain contour g is calculated as

PaYe =Xpss)g
>

=Yp,slgpsysg )
>

where pj, s| g denotes the probability of sequence of states s,
and p, y|s, g) is the probability density function (pdf) of the
sequence of out vectors y given g and s. For first-order HMM’s,
P s|g) is given by

7

Pa Slg): nasnflsn » (6)

n=1

where ag _j, denotes the transition probability from state at

time #-1 to state at time 7.
The p, (y|s g) is

pa(fs.2)= l%llpz Wulsn-2) @)

where the pdf p, (yn |sn, gn) of the vector y,, given that this

vector was generated from state s, and gain contour g,, .
Then, from (4) p, (yn |Sn , gn) is given by

_B*n ~1
eupl =B
nN Zgn 05”

p/‘t(ynlsnfgn): I1 )
f27zg,,0'5”

8.
t=(n-1)N ()

or in matrix form

1 -
eXp(- 5 ' €3y J
(27[)% det% (Csu )

7 -1
where Cy =g30‘3 (AS”[AS”) and Ag is a NxN lower

pﬂ(Ynlsn’gn):

(8.b)

triangular Toeplitz matrix in which the first elements 2P +1 of
the first column constitute the coefficients of the AR process.
The parameter set A= {a,j-,Bj,on-,i,j =1..L } of the
nonstationary ARHMM and gain contour g for the clean speech
is estimated from training sequences of clean speech signals.
Note that A4 denotes the parameter set of the ARHMM for the
gain-normalized signal.

3. Gain adapted training algorithm

Gain-adapted training of the nonstationary ARHMM for the
word results from ML estimation of the parameter set A from a
training sequence y from word using an ML estimate of the gain
contour g. Then, A can be estimated from

max max p (y|g) 9
A g

However, the gradient equations of p ,;(y|g) with respect to

{A,g} are nonlinear and therefore have no simple solution.
Hence, the estimation of {A,g} is performed here iteratively
using the expectation-maximization (EM) approach [6,7]. Then,
each iteration constitutes one EM iteration for estimating a value
of A given g and one EM iteration for estimating g using the
resulting A .

The training algorithm for nonstationary ARHMM with gain
contour can be summarized as follows.

3.1 Estimation of 4
Assuming that the gain contour g, for all » is known, the

estimation formulas for A can be derived from maximizing
Baum’s auxiliary function [3,4]. Each iteration of the Baum
algorithm starts with an old set of parameters, say A;,_;, and

estimates a new set of parameters, say A;, by maximizing the

following auxiliary function:

01(1.g)=% ps, |y g)log p,, (v.s]¢) - (10)
B
The objective function can be simplified to
LT
0(hg)=% 2P, (Sn—l =i,8, = j|y,g),
ij=1n=1
xlloga,-j+logpll (ynlsn,gn)J an

where
N
lngﬂ., (yn |Sn ) gn) = _710g (27[g’3 sz)
. 2
w o (10)-B5(e-1)
b2 2

2
&n0j

t=(n-T)N+1

and Pi, (Sn—l =15, =j|y,g) is the posteriori probability of



the transition from state 7 to state j given the signal ) and the
gain contour g, at the (/-1)th iteration.

The O (i g) is
differentiation with respect to each of a;;, B/ 05 (z Jj=L. L)

auxiliary  function optimized by

respectively. As in standard HMM, the reestimation formulas of
the Markov chain and nonstationary AR parameter are
established by setting

(12)

L
, L, subject to the constraint aj =1. We obtain

J=1

for ij=1,...

the reestimation formula

épz,,l (Sn—l =i, = jl», g)

aij =

(13)

Z]Zm, (spor =iy = v 2)
J
n=j|y,g) can be

calculated efficiently by the forward-backward algorithm.
Also, the reestimation formulas for nonstationary AR parameter
are obtained by solving

where the probability p 2 (snl

LT nN
B/{ZZMH( =is, =y, g) > i(t-1)
i=ln= t=(n-1)N+1
o L[ LT
y(e- 1)] T3 pa, (500 =5, = sy )
nN
x 2 ye-1) (14)
l:(an)N+l
and
o2 - 1
Zl Zlm, sy =ivs, = jv.g)
{lepﬂ, (s, =ics, = jv.g)
nN . 2
p(t)- B (-1 15
e
0] Ae=1) e=1) e-2)
h t d t—
vhere §)= o R & & &
T
) — —
ny(t )L y(t p)ny(t p)} are normalized observation
&En &n &En

sequence by gain contour.

If M is set to zero, then (14)-(15) reverts to the reestimation
formula for the Gaussian mean vectors in the standard

ARHMM. This is expected since, as the time-varying
component in the trend function is removed, the resulting
degenerated nonstationary AR HMM is no different from the
standard ARHMM.

3.2 Estimation of gain contour g;
Next, for estimating the gain contour g, assume that A is

known. Let g, ; and g, be a current and a new estimate of the

gain contour of the signal y, respectively. Then, the objective
function for g, is given by

01(2.8)=% s (slv. 211 )log 1 (sl £11)
>

L T
=X Zpﬂ(sn—l =15, =j|y,g/71)

i,j=1n=1

xlloga,-j +logpl(s|y,g,_1)J. (16)

Similarly to what we have seen before, maximization of the
auxiliary function over g results in an estimate of the gain
contour g by setting the gradient of O, (/1, g) with respect to g

A0,

to zero; —2:0.
x

We arrive at the following gain reestimation formula

, L | v ()-8 ye-1)f
glu=2pilsn=spgin) X 2 .(17)
J=1 t=(n-1)N+1 o

J

The iteration process start with initial gain contour g;_y, =1
for all n, and repeated
A1 = A1 81 =81 1S

likelihood in two consecutive iterations is sufficiently small.

until either a fixed point
reached or the difference in

4. Gain-adapted Speech recognition

In speech recognition, given the word speech sequence y the
decision rule for spoken word y is

g). (18)

max max pﬂ( |
I<isZ g

where Z is number of the total word for speech recognition.
The algorithm for local maximization of p (y| g) over g can be

summarized as follows;

Step-0: lnitialization' For given the parameter

ﬂ—{a B’ aj,z j=1.. L}, go=1,and ¢,
evaluate p, (y|g0 )and =0 .

Step-1:  Gain estimation: Calculate the posterior probabilities

123 (sn|y,g[) for 5, =1..,Land n=1,..,T,

and estimate g;,; using (17).

Step-2: If p, (y|g,+1)— D (Y|g/ )S €,



assign Mgax P (y|g)= P (y|g,+]) and stop

Otherwise, set / — /+1 and goto Step-1.

5. Experimental Results

We have evaluated our new method on a base of ten isolated
Korean digits with three versions of each digit pronounced by
seven male speakers. Only 50 speech data of five speakers have
participated in training and other 160 speech data have been
used for test. This speech data were sampled at 10kHz and
modeled by state L=5 and AR order of 15. Training and
recognition were performed on nonoverlapping vectors of the
speech word whose dimension was N=256. The proposed
method with gain-adapted recognition was compared with a
conventional gain-normalized approach [2]. For the data (A) of
speakers who participated in training and those (B) of the
speakers who didn’t participate in training, the recognition rates
of the conventional training algorithm has scored 96 % and
90%, respectively while those of the proposed algorithm has
scored 98.8% and 93.2 %, respectively. Table 1 shows a results
of comparison of the recognition accuracies. Table 2 shows a
results of comparison on conventional ARHMM with gain
adaptation [5], and proposed method with gain adaptation (in
this case, conventional method is equal to proposed method with
M=0) and M=1. From this result, the proposed method had a
good performance.
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Table 1. Recognition results

Data | Gain-normailzed Gain-adapted
A 96% 98.8%
B 90% 93.2%

Table 2. Recognition results

Data | ARHMM with M=0 ARHMM with A=1
A 98% 98.8%
B 92.5% 93.2%




