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PerceptuallyGuided Training). The LID training experiments
ABSTRACT with LIREN/PGT show the efficacy of our approach. Our
) research includes investigations of a number of issues in RNN
We present a novel approach to Automatic Languag8p training, and proposes a number of algorithmic solutions
dentification (LID). ~ We proposePerceptually Guided {qr the RNN train-ing for LID. Our LID experiments were on

Training (PGT) a novel LID training method, involving gngiish German, and Mandarin Chinese, using the OGI-TS [5]
identification of utterance parts which are partlcularlyspeech corpus.

significant perceptually for the language identification process,

and exploitation of thesdéerceptually Significant Regions 2. RNN-BASED APPROACH

(PSRs) to guide the LID training process. Our approach

involves a Recurrent Neural Network (RNN) as the maiwe suggest that the acoustical context range is particularly
mechanism. We propose thagcause of theohg-range intra- extensive and important in LID (compared to, e.g., a phonetic
utterance acoustical context significance in LID, RNNs argecognition task). We propose that the implicit inclusion of the
particularly suitable for the LID task. Our approach does n@fast, inherent in RNNs due to their feedback connections, can
require phonetic labeling or transcription of the training corpusiccount for that context, making RNNs particularly suitable for
LIREN/PGT, the LID system we developed, incorporates ourD. Regarding the type of input, although LIREN/PGT has
approach. Our LID experiments were on English, German, agglovisions for possible future experiments with speech units (in

Mandarin Chinese, using the OGI-TS corpus. particular the automatically derived fenonic units [3]) its
baseline form relies on the acoustic domain feature vectors.
1.INTRODUCTION The principal reason for this is the desire to deliver to the RNN

main engine the maximum of the information available in the
signal. A conversion of the acoustic domain features into
Beech units simplifies the network subsequent operation (a

Automatic Language Identification (LID) is the task of
identifying the natural language used in a monolinguaksp i
excerpt, in a speaker-independent manner. Approaches to L e A . .
include (e.g., [9]) those based on HMMs, VO and histogramﬁlmpler classification problem), but it filters the information,

honotacti d I techni tlizing L arrowing its scope to the chosen speech unit domain. In the
phonotactics, prosody, as well as techniques Ullzing Lardg,cence of the fundamental understanding of the essential LID
Vocabulary Continuous ®pch Reggnition (LVCSR), and

_process, we chose to attempt the RNN recognition ualhg
feedforward (MLP) neural networks. We are Concemed_wnﬁvailable information, i.e., the acoustic feature vectors, in spite
the essentialLID task, the term we use for the LID capability

that d t rel h i bilit t th of the difficulty issue (feature space dimensionality). Our
at does not rely on speech agoition capabliiies at e ¢ 1ts show that, with appropriate algorithmic provisions, such
word-level and above.

LID training can be successful.

\éVgé)égSfrr;r?nnO\(/slc;f;}rp))groachl to thz_essentlal "-:'ace".t uallly The global architecture of the LIREN/PGT system is shown in
>uided fraining novel paradigm WEe propose, invo VeSFigure 1. The preparatory stages (B), aided by auxiliary utilities
identification of utterance parts which are particularly

L . e éF) generate the speech data repository contents in the
significant perceptually for the language identification proces LIREN/PGT native” form. The VideVox facility [2] (C) is
and exploitation of theséPerceptually Significant Regions )

. o . responsible for supplying the PGT information (discussed later)
(PSRS).ftO guu(jj_e thg tr_alnlngfpr_o?ess. '!'hus, expl_(f)_ltatlon 0; trt]ﬁat, together with the correspondingesph waveform data
Inon-unl or_r(r; .']fm ution 0 |n|0rma_l-t|onh specific 10 the .o stitutes the LIREN/PGT main speech data repository (D).
anguage identification process, locating the utterance portioRp e o ayre generation stages (E) produce the feature vector sets
where the levels of such information are elevated (PSRs), a ), the input to the RNN engine. The LIREN/PGT system was

utilizing them to improve the LID training process, are th developed in C and MS Visual C++ ver. 5.0, on a WindowsNT
underlying concepts of the PGT. Our approach involves th.oz00 MHz Pentium Pro system with 64M'B RAM '

Recurrent Neural Network (RNN) architecture as the
fundamental LID mechanism [1,3]. We believe that the longRecurrent Architectures in LIREN/PGT. Two related RNN
term intra-utterance context plays a major role in the essentiichitectures have been used in LIREN/PGT. The firfit)lya
LID. The inclusion of this context is our principal motivationinterconnected two-layer recurrent architecture, is shown in
for the RNN-based approach. Our approach does not requiFgjure 2a. This diagrammatic representation adagshow the
phonetic labeling or transcription of theesgh corpus. The multitude of nodes and connections. The outputamhnode
developmental and experimental aspects of our research includdayer L1 connects teachnode of layer L2 ((A) is a fully

a system implementing our approach, LIREN/PG&anguage connected bipartite graph). State input nodeseive their
Identification with REcurrent Neural networks and



inputs through the delay stage from the state output nodesgarformance of these three feature vector types, did not show
layer L2. The external output nodes deliver the languageajor performance differences between the lower-dimensional
probability (one node per language). The number of state nod8®) RASTA-PLP feature vectors and substantially higher-
impacts the degree of context inclusion by the network. In thdimensional (e.g., 21D) spectral or cepstral feature vectors.
work the number of state nodes was often about 160. With Zhese results indicate that RASTA-PLP based features are
input nodes, a bias node and two external output nodes tparticularly suitable for LID.

network contains a total of 344 nodes, and 118336 weight
connections. Neural networks of such size present serious SPHERE |Header VideVox LID
challenges in development and training (further exacerbated by Egcsc;'ig'n ?O”rﬁqat Szgnr:gg:ggn/
the delay Z'/ loops which, during training, turn the network Corpus processing facility
into a large multilayer structure, replicating in time the above

spatial view). The second neural network architecture in ® I ®) I ©
LIREN/PGT, shown in Figure 2b, is RTRL [8]. The L1 nodes LID auxiliary utility 3
consist of _blaS and |nput_nodes, and are fully |nterconnecte_d to toolkit LIREN/PGT
layer L2 via the connection structure (A). Thus (A) contains Speech Data
(b+i)(r+t) links, whereb, i, r, andt, are the number of bias, (F) (D)

input, RTRL and target nodes, respectively. All nodes in layer Language ././ l

L2 are also connected through the delay stagetd all nodes Hypothesis RASTA-PLP | [Spectral | |Cepstral
of L2. Thus the feedback loop involves a fully interconnected Feature Feature | (Feature
set of links (B, C). As in the previous case, our diagrammatic [ " Processor | [Processr [Processor
representation hides the huge size of the network (Figure 2b

does not show explicitly the multitude of nodes and LIREN/PGT Recurrent

connections). Neural Network

Engine LIREN/PGT

Feature Vector Se

(G)

Target functions. In LID, the RNN target function definition
issue is not trivial. While the input behavior €sgh) is quite
dynamic, the output (language) remains static upon the change

of speakers, their speaking style or gender, and chamiieat  Figure 1: LIREN/PGT global architecture
those utterance boundaries where the two utteranceseatljn

the training data stream, belongdifferent languagesin [1,3],

Fully interconnected.

we have described three target function models of LIREN/PG™ o [ ]  Total ber b Fullyinter-
the piece-wise constanthe exponential rise and thelinear S 1E I\ ) otal number
) o |m connections in (A) ~ connected
fuzzy halfmodels. Thdinear fuzzy halfmodel we proposed, < | | reaching e
smoothens the training process by introducing overlaps & |9 g¢e.g. b
L . . 5 |8 [ 118336

language probabilities during the first half each utterance: & |38 3L
while the true-language target vector component increases, ° P z S o (B) L ©)
components (probabilities) for other languages decrea < §. ‘g_ g%‘ - (_
correspondingly. This fuzzy overlap stops at mid-point of the = 5 g§ g 2 (Ll 9
utterance, and the target components remain constant acrog_sl)_ A) [ i,% o g ‘8‘ o g
utterances, until a language change occurs, at which point the o 2 o ; -ﬂ% f 5
process repeats. The fuzzy overlap effect starts only on those |3 B g 9 5 4 g
utterance boundaries on which the languagwially changes; z =4 S £ S8 e >

, 2 2 T |8 o2
other boundaries have no effect (regardless of, e.g., speaker I I ol S | 95
speech mode changes between utterances). The “fuzzy hal 2] 2] g » =) = i) 33
target function resulted in the best performance. °g o 3 g o

(] c
— 1w T~ = sl — %

Acoustic Signal Processing.LIREN/PGT includes three types : g S — %
of acoustical processing front-end subsystems, for a comparison Qo (3
of different feature vector types' efficacy in RNN LID. In the
spectral domain based feature vector subsyssamilar to [6], (&) 2-layer Recurrent (b) RTRL Recurrent
short term Fourier analysis (FFT) is performed, and the power Neural Network Neural Network

spectrum is divided into twe_nt_y mel-scale bln_s. The reSUItmﬁigure 2: LIREN/PGT recurrent neural network architectures
twenty spectral energy coefficients and the signal energy form

an R® feature vector space. In thepstral domain-based 3. PERCEPTUALLY GUIDED TRAINING

feature vector subsysterthe 16th order LPC based cepstral

coefficients and, as in [6], the fundamental frequency estimaterceptually Guided Training (PG;Th novel method for LID
and the voicing level, form aR™ feature vector space. In the training, is a key component of our overall approach.
RASTA-PLP based feature vector subsystima, 8th order Pperceptual experiments indicate [3] that humans notice certain
RASTA-PLP [4] coefficients and the signal power formRih  specific utterance parts when listening to an unknown language.
feature vector space. Our experiments, comparing LIWe propose that language-identity-specific information is



distributed in a non-uniform fashion along the utterance, arBlased on our experiments, it appeared that in 10-sec. utterances
that human listeners are able to spot the locations within tif@®GI-TS) the subjects could identify up to four PSRs. After
utterance where the levels of such information are elevated. Wet, the efficiency dropped off visibly and the subjects were
do not know what aspects of the total information present in thi&ely to “fix” on a specific short interval within the utterance.
speech signal actually constitute theagaage-identity-specific If confirmed, this phenomenon may also be related to our
information. However, we propose that the location oprocedure, e.g., the repetitive listening to the entire utterance
utterance portions that are “characteristic” for human listener@llowed by VideVox), to which subjects often resorted after
can be determined experimentally, and that these regions exhitnincluding the identification of a PSR. Regarding the utterance
elevated levels of the language-identity-specific information. Iduration, the PSR identification appeared to be easier in longer
PGT, we perform the detection of such regions and, using thé&erances (story-bt), than in short (10 sec.) ones.

detection results, we subsequently guide the training process to

emphasize these parts of the training data (utterances) that 3&r2 PSR re-exposure algorithm

particularly language-identity-significant perceptually. ) ]
We developed two techniques by which the PGT makes use of

3.1 PSR ldentification the PSR data during the neural network training. The first
technique, thetarget function profilingalgorithm, involves a
We use VideVox, a dedicated facility we developed [2], talynamic modification of the target function at the PSR
identify regions within the utterance that appear to listeners &scations, reinforcing the correct language target function vector
particularly characteristic of the language used in the giveromponent at those locations. The second techniqud}SRe
utterance. The data obtained in this process represent what neexposurealgorithm, proved to perform better of the two.
termed as thé®erceptually Significant Regions (PSKEfined The essence of the PSR re-exposure algorithm is a controlled
as the regions where the density of language-identity-specifimd automatic increase of the neural network’s exposure during
information is particularly high [3]. The PSR boundaries aréraining to the language-identity-specific information contained
not required to be precise and are described probabilisticalip.the PSRs. Each PSR is presented (re-exposed) to the network
We do not constrain PSRs in any way, e.g., we do not imposdimes in each training epoch i an adjustable re-exposure
any assumptions or constraints on their duration or content. factor). When LIREN/PGT operates in the PSR re-exposure
) o ) . training mode, the feature vector stream processing includes the
PSR . |dent|f|(_:at|on_ IS accompll_shed_ dagh p_erceptual detection of the PSRs’ presence. The boundariesacf PSR
experiments, in which human subjects interact with VldeVo>gjlre determined and the PSR is in effect replicated from the

During the experiment session, VideVox is used [2] o presefbining viewpoint. Thus the influence of the PSR areas on the
the utterances in different languages to the subject. VldeV? ining process is reinforcedtimes. The PGT intensity [3] is
facilities [2], designed specifically for the PSR identification

> A ! . roportional tar. Our experiments showed thraB was a good
task, allow subjects to identify and designate PSRs. \/\Eep

X > erating point for the algorithm. This operating point
performed perceptual experiments to elicit the PSR data fgfeared to be essentially independent of the PSR duration and
English, German, and Mandarin Chinese (subjects 'nteraCtgﬂecifics.
with VideVox, using its facilities to identify PSRs). Our
experiments indicate that the PSR detection is possible. TWée performed a large number of experiments to determine the
subjects had no difficulty in identifying “characteristic” regionsefficacy of the PGT mébd. The English/German experiments
for the languages they did not know. The overlaps between there particularly interesting, given the linguistic proximity of
areas identified by the subjects indicate the existence of PSRRe two languages. Our experiments showed a consistent
common to different listeners. In addition, we observed thsuperiority of the PGT training performance over a non-PGT
following trends during the PSR identification. For English, théraining, with an improvement of about 9%.

PSRs often included phrases containing /th/, /dh/, /t/, “the”, /jh/,

and vocal pauses filled with /ae/, /a/. For German, PSRs often 4. RNN TRAINING IN LID

included phrases containinch, ich-bin, auf, che(as inkuch@,

ro (as inbuerg, ein, die, ger(as ingegangehdenorten(asin 4.1 Backpropagation Through Time

arbeiten), and ‘stra’ (as in strassg§. For Mandarin Chinese,

PSRs often included rapid successions of syllables generafickpropagation Through Time (BTT) [7] was one of two
starting with the Mandarin Chinese phones similar to /y/, /chifaining modes used in this work. We used the adaptive weight
and /sh/. However, while the above trends appeared #pdate algorithm [6]. Our initial LID experiments with it
represent expectable phonetically oriented patterns (e.g., /th/Showed convergence difficulties, attributed to the difficulty of
English), others were re|ative|y unexpected (e_gq” “for the LID task direCtly based on acoustic features. Among the
German). It should be emphasized that, while the abovygodifications we introduced in BTT to achieve training
phonetic sequences were observed in PSRs, the actual PSRs&fBvergence, the step size range restriction, and the avoidance
contained them were typically much longer in duration, an@f near-zero gradient operations, were found most effective [1].
thus should not be considered as chiefly due to, or reducible tgMmiting the step sizes (in each weight space dimension) to a
these phonetic sequences. We believe that PSRs arise floamd of four orders of magnitude of the initial step size helped
effects that areot restricted only to the phonetic domain andPrevent step size drifting. When the weight update decision

that they include long-range (beyond phonetic |eve|§gradient sign test [6]) originated from near-zero values, i.e., the
phenomena. local gradientdJ(t)/ow;| was below a low-value threshold, the



corresponding weight update was withheld.
stabilizing effect on the training process.

This had eontext is particularly critical (and extensive) in LID. We
proposed Recurrent Neural Networks as the central
. identification architecture, motivated by a capability of an
Number of state nodes. The ability of the RNN to acunt for o yicit inclusion of that context via the feedback mechanism of
the context (past) is influenced by the number of state nodtfﬁe RNN. Our approach does not require phonetic labeling or
We studied the effect of the number of state nodes on the LlPanscription of the training data. We proposed several
training. RNNs with 75 nodes in the state layers pencorme&‘gorithmic directions for RNN training in LID. These include
acceptably well. Our best resu_ltsvolved 120 to 16(_) state e Aperiodic Update Recurrent Training (AURT), and LID-
nodes; we used 160 state nodes in many of our experiments. ro|ateq modifications to the Backpropagation Through Time.

BTT sequence extent. The BTT sequence (expansion) lengthVé have shown experimentally the convergence and the
is the extent of theexplicit context inclusion in BTT. We feasibility of RNN training for LID, when the algorithmic
experimented with two types of context interval: a selectabfPlutions we have proposed are employed. The LIREN/PGT
fixed length, and a variable length equal to the length GPy/Stem we have developed implements our approach to LID.
utterance. The fixed BTT sequence lengths below 0.3 utterarfe&Perimental aspects included LID experiments with English,
length performed relatively poorly, reflecting an insufficientG€rman, and Mandarin Chinese, using the OGI-TS speech
context inclusion level. A more complex, variable sequencgPus. The results of our experiments demonstrate the promise
length approach performed better, while the best performaneé Perceptually Guided Training, and Recurrent Neural
was attained with fixed sequence lengths in the range of 0.3hNgtworks, for Automatic Language Identification.

0.9 lengths.
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