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ABSTRACT

We present a novel approach to Automatic Language
Identification (LID).  We propose Perceptually Guided
Training (PGT), a novel LID training method, involving
identification of utterance parts which are particularly
significant perceptually for the language identification process,
and exploitation of these Perceptually Significant Regions
(PSRs) to guide the LID training process.  Our approach
involves a Recurrent Neural Network (RNN) as the main
mechanism.  We propose that, because of the long-range intra-
utterance acoustical context significance in LID, RNNs are
particularly suitable for the LID task.  Our approach does not
require phonetic labeling or transcription of the training corpus.
LIREN/PGT, the LID system we developed, incorporates our
approach.  Our LID experiments were on English, German, and
Mandarin Chinese, using the OGI-TS corpus.

1. INTRODUCTION

Automatic Language Identification (LID) is the task of
identifying the natural language used in a monolingual speech
excerpt, in a speaker-independent manner.  Approaches to LID
include (e.g., [9]) those based on HMMs, VQ and histograms,
phonotactics, prosody, as well as techniques utilizing Large
Vocabulary Continuous Speech Recognition (LVCSR), and
feedforward (MLP) neural networks.  We are concerned with
the essential LID task, the term we use for the LID capability
that does not rely on speech recognition capabilities at the
word-level and above.

We present a novel approach to the essential LID.  Perceptually
Guided Training (PGT), a novel paradigm we propose, involves
identification of utterance parts which are particularly
significant perceptually for the language identification process,
and exploitation of these Perceptually Significant Regions
(PSRs) to guide the training process.  Thus, exploitation of the
non-uniform distribution of informa-tion specific to the
language identification process, locating the utterance portions
where the levels of such information are elevated (PSRs), and
utilizing them to improve the LID training process, are the
underlying concepts of the PGT.  Our approach involves the
Recurrent Neural Network (RNN) architecture as the
fundamental LID mechanism [1,3].  We believe that the long-
term intra-utterance context plays a major role in the essential
LID.  The inclusion of this context is our principal motivation
for the RNN-based approach.  Our approach does not require
phonetic labeling or transcription of the speech corpus.  The
developmental and experimental aspects of our research include
a system implementing our approach, LIREN/PGT (Language
Identification with REcurrent Neural networks and

Perceptually Guided Training).  The LID training experiments
with LIREN/PGT show the efficacy of our approach.  Our
research includes investigations of a number of issues in RNN
LID training, and proposes a number of algorithmic solutions
for the RNN train-ing for LID.  Our LID experiments were on
English, German, and Mandarin Chinese, using the OGI-TS [5]
speech corpus.

2. RNN-BASED APPROACH

We suggest that the acoustical context range is particularly
extensive and important in LID (compared to, e.g., a phonetic
recognition task).  We propose that the implicit inclusion of the
past, inherent in RNNs due to their feedback connections, can
account for that context, making RNNs particularly suitable for
LID.  Regarding the type of input, although LIREN/PGT has
provisions for possible future experiments with speech units (in
particular the automatically derived fenonic units [3]) its
baseline form relies on the acoustic domain feature vectors.
The principal reason for this is the desire to deliver to the RNN
main engine the maximum of the information available in the
signal.  A conversion of the acoustic domain features into
speech units simplifies the network subsequent operation (a
simpler classification problem), but it filters the information,
narrowing its scope to the chosen speech unit domain.  In the
absence of the fundamental understanding of the essential LID
process, we chose to attempt the RNN recognition using all
available information, i.e., the acoustic feature vectors, in spite
of the difficulty issue (feature space dimensionality).  Our
results show that, with appropriate algorithmic provisions, such
LID training can be successful.

The global architecture of the LIREN/PGT system is shown in
Figure 1.  The preparatory stages (B), aided by auxiliary utilities
(F) generate the speech data repository contents in the
“LIREN/PGT native” form.  The VideVox facility [2] (C) is
responsible for supplying the PGT information (discussed later)
that, together with the corresponding speech waveform data
constitutes the LIREN/PGT main speech data repository (D).
The feature generation stages (E) produce the feature vector sets
(G), the input to the RNN engine.  The LIREN/PGT system was
developed in C and MS Visual C++ ver. 5.0, on a WindowsNT,
200 MHz Pentium Pro system with 64MB RAM.

Recurrent Architectures in LIREN/PGT .  Two related RNN
architectures have been used in LIREN/PGT.  The first, a fully
interconnected two-layer recurrent architecture, is shown in
Figure 2a.  This diagrammatic representation does not show the
multitude of nodes and connections.  The output of each node
in layer L1 connects to each node of layer L2 ((A) is a fully
connected bipartite graph).  State input nodes receive their



inputs through the delay stage from the state output nodes in
layer L2.  The external output nodes deliver the language
probability (one node per language).  The number of state nodes
impacts the degree of context inclusion by the network.  In this
work the number of state nodes was often about 160.  With 21
input nodes, a bias node and two external output nodes the
network contains a total of 344 nodes, and 118336 weight
connections.  Neural networks of such size present serious
challenges in development and training (further exacerbated by
the delay /z-1/ loops which, during training, turn the network
into a large multilayer structure, replicating in time the above
spatial view).  The second neural network architecture in
LIREN/PGT, shown in Figure 2b, is RTRL [8].  The L1 nodes
consist of bias and input nodes, and are fully interconnected to
layer L2 via the connection structure (A).  Thus (A) contains
(b+i)(r+t)  links, where b, i, r, and t, are the number of bias,
input, RTRL and target nodes, respectively.  All nodes in layer
L2 are also connected through the delay stage (z-1) to all nodes
of L2.  Thus the feedback loop involves a fully interconnected
set of links (B, C).  As in the previous case, our diagrammatic
representation hides the huge size of the network (Figure 2b
does not show explicitly the multitude of nodes and
connections).

Target functions.  In LID, the RNN target function definition
issue is not trivial.  While the input behavior (speech) is quite
dynamic, the output (language) remains static upon the change
of speakers, their speaking style or gender, and changes only at
those utterance boundaries where the two utterances, adjacent in
the training data stream, belong to different languages.  In [1,3],
we have described three target function models of LIREN/PGT:
the piece-wise constant, the exponential rise, and the linear
fuzzy half models.  The linear fuzzy half model we proposed,
smoothens the training process by introducing overlaps in
language probabilities during the first half of each utterance:
while the true-language target vector component increases, the
components (probabilities) for other languages decrease
correspondingly.  This fuzzy overlap stops at mid-point of the
utterance, and the target components remain constant across
utterances, until a language change occurs, at which point the
process repeats.  The fuzzy overlap effect starts only on those
utterance boundaries on which the language actually changes;
other boundaries have no effect (regardless of, e.g., speaker or
speech mode changes between utterances).  The “fuzzy half”
target function resulted in the best performance.

Acoustic Signal Processing.  LIREN/PGT includes three types
of acoustical processing front-end subsystems, for a comparison
of different feature vector types' efficacy in RNN LID.  In the
spectral domain based feature vector subsystem, similar to [6],
short term Fourier analysis (FFT) is performed, and the power
spectrum is divided into twenty mel-scale bins.  The resulting
twenty spectral energy coefficients and the signal energy form
an R(21) feature vector space.  In the cepstral domain-based
feature vector subsystem, the 16th order LPC based cepstral
coefficients and, as in [6], the fundamental frequency estimate
and the voicing level, form an R(19) feature vector space.  In the
RASTA-PLP based feature vector subsystem, the 8th order
RASTA-PLP [4] coefficients and the signal power form an R(9)

feature vector space.  Our experiments, comparing LID

performance of these three feature vector types, did not show
major performance differences between the lower-dimensional
(9D) RASTA-PLP feature vectors and substantially higher-
dimensional (e.g., 21D) spectral or cepstral feature vectors.
These results indicate that RASTA-PLP based features are
particularly suitable for LID.
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Figure 1:  LIREN/PGT global architecture
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Figure 2:  LIREN/PGT recurrent neural network architectures

3. PERCEPTUALLY GUIDED TRAINING

Perceptually Guided Training (PGT), a novel method for LID
training, is a key component of our overall approach.
Perceptual experiments indicate [3] that humans notice certain
specific utterance parts when listening to an unknown language.
We propose that language-identity-specific information is



distributed in a non-uniform fashion along the utterance, and
that human listeners are able to spot the locations within the
utterance where the levels of such information are elevated.  We
do not know what aspects of the total information present in the
speech signal actually constitute the language-identity-specific
information.  However, we propose that the location of
utterance portions that are “characteristic” for human listeners,
can be determined experimentally, and that these regions exhibit
elevated levels of the language-identity-specific information.  In
PGT, we perform the detection of such regions and, using the
detection results, we subsequently guide the training process to
emphasize these parts of the training data (utterances) that are
particularly language-identity-significant perceptually.

3.1 PSR Identification

We use VideVox, a dedicated facility we developed [2], to
identify regions within the utterance that appear to listeners as
particularly characteristic of the language used in the given
utterance.  The data obtained in this process represent what we
termed as the Perceptually Significant Regions (PSR), defined
as the regions where the density of language-identity-specific
information is particularly high [3].  The PSR boundaries are
not required to be precise and are described probabilistically.
We do not constrain PSRs in any way, e.g., we do not impose
any assumptions or constraints on their duration or content.

PSR identification is accomplished through perceptual
experiments, in which human subjects interact with VideVox.
During the experiment session, VideVox is used [2] to present
the utterances in different languages to the subject.  VideVox
facilities [2], designed specifically for the PSR identification
task, allow subjects to identify and designate PSRs.  We
performed perceptual experiments to elicit the PSR data for
English, German, and Mandarin Chinese (subjects interacted
with VideVox, using its facilities to identify PSRs).  Our
experiments indicate that the PSR detection is possible.  The
subjects had no difficulty in identifying “characteristic” regions
for the languages they did not know. The overlaps between the
areas identified by the subjects indicate the existence of PSRs
common to different listeners.  In addition, we observed the
following trends during the PSR identification.  For English, the
PSRs often included phrases containing /th/, /dh/, /r/, “the”, /jh/,
and vocal pauses filled with /ae/, /a/.  For German, PSRs often
included phrases containing ich, ich-bin, auf, che (as in kuche),
ro (as in buero), ein, die, gen (as in gegangen) den or ten (as in
arbeiten), and “stra” (as in strasse).  For Mandarin Chinese,
PSRs often included rapid successions of syllables generally
starting with the Mandarin Chinese phones similar to /y/, /ch/,
and /sh/.  However, while the above trends appeared to
represent expectable phonetically oriented patterns (e.g., /th/ in
English), others were relatively unexpected (e.g., “ro” for
German).  It should be emphasized that, while the above
phonetic sequences were observed in PSRs, the actual PSRs that
contained them were typically much longer in duration, and
thus should not be considered as chiefly due to, or reducible to,
these phonetic sequences.  We believe that PSRs arise from
effects that are not restricted only to the phonetic domain and
that they include long-range (beyond phonetic level)
phenomena.

Based on our experiments, it appeared that in 10-sec. utterances
(OGI-TS) the subjects could identify up to four PSRs.  After
that, the efficiency dropped off visibly and the subjects were
likely to “fix” on a specific short interval within the utterance.
If confirmed, this phenomenon may also be related to our
procedure, e.g., the repetitive listening to the entire utterance
(allowed by VideVox), to which subjects often resorted after
concluding the identification of a PSR.  Regarding the utterance
duration, the PSR identification appeared to be easier in longer
utterances (story-bt), than in short (10 sec.) ones.

3.2 PSR re-exposure algorithm

We developed two techniques by which the PGT makes use of
the PSR data during the neural network training.  The first
technique, the target function profiling algorithm, involves a
dynamic modification of the target function at the PSR
locations, reinforcing the correct language target function vector
component at those locations.  The second technique, the PSR
re-exposure algorithm, proved to perform better of the two.
The essence of the PSR re-exposure algorithm is a controlled
and automatic increase of the neural network’s exposure during
training to the language-identity-specific information contained
in the PSRs.  Each PSR is presented (re-exposed) to the network
r times in each training epoch (r is an adjustable re-exposure
factor).  When LIREN/PGT operates in the PSR re-exposure
training mode, the feature vector stream processing includes the
detection of the PSRs’ presence.  The boundaries of each PSR
are determined and the PSR is in effect replicated from the
training viewpoint.  Thus the influence of the PSR areas on the
training process is reinforced r times.  The PGT intensity [3] is
proportional to r.  Our experiments showed that r=8  was a good
operating point for the algorithm.  This operating point
appeared to be essentially independent of the PSR duration and
specifics.

We performed a large number of experiments to determine the
efficacy of the PGT method.  The English/German experiments
were particularly interesting, given the linguistic proximity of
the two languages.  Our experiments showed a consistent
superiority of the PGT training performance over a non-PGT
training, with an improvement of about 9%.

4. RNN TRAINING IN LID

4.1 Backpropagation Through Time

Backpropagation Through Time (BTT) [7] was one of two
training modes used in this work.  We used the adaptive weight
update algorithm [6].  Our initial LID experiments with it
showed convergence difficulties, attributed to the difficulty of
the LID task directly based on acoustic features.  Among the
modifications we introduced in BTT to achieve training
convergence, the step size range restriction, and the avoidance
of near-zero gradient operations, were found most effective [1].
Limiting the step sizes (in each weight space dimension) to a
band of four orders of magnitude of the initial step size helped
prevent step size drifting.  When the weight update decision
(gradient sign test [6]) originated from near-zero values, i.e., the
local gradient |∂J(t)/∂wij| was below a low-value threshold, the



corresponding weight update was withheld.  This had a
stabilizing effect on the training process.

Number of state nodes.  The ability of the RNN to account for
the context (past) is influenced by the number of state nodes.
We studied the effect of the number of state nodes on the LID
training.  RNNs with 75 nodes in the state layers performed
acceptably well.  Our best results involved 120 to 160 state
nodes; we used 160 state nodes in many of our experiments.

BTT sequence extent.  The BTT sequence (expansion) length
is the extent of the explicit context inclusion in BTT.  We
experimented with two types of context interval: a selectable
fixed length, and a variable length equal to the length of
utterance. The fixed BTT sequence lengths below 0.3 utterance
length performed relatively poorly, reflecting an insufficient
context inclusion level.  A more complex, variable sequence
length approach performed better, while the best performance
was attained with fixed sequence lengths in the range of 0.3 to
0.9 utterance lengths.

4.2 Aperiodic Update Recurrent Training

The second training algorithm in LIREN/PGT is the Aperiodic
Update Recurrent Training (AURT) algorithm we developed.
AURT is in essence a modified Williams-Zipser RTRL
algorithm [8].  The AURT method is based on the specific
character of the LID task: the input feature vectors are naturally
grouped by utterances. Considering this, and the possibilities of
changes (speaker, speech characteristics, or language) from one
utterance to another, we tie the reset of the RTRL impact
coefficients (representing the influence of any weight on the
output of any node) to the utterance endpoints.  Thus, unlike in
RTRL, the impact matrix reset mechanism in our method is
aperiodic, since it is dependent on the (variable) utterance
lengths.  In AURT, both the aperiodic reset of the impact
matrix, and the weights update process take place at those
points.  We performed a multitude of LID training experiments,
on English, German and Mandarin Chinese, with and without
PGT, to determine the efficacy of AURT.  The non-PGT AURT
training typically exhibited a convergent but slow learning
behavior.  The PGT non-AURT experiments often exhibited
rapid learning, especially in the initial phases.  However, not
infrequently, we observed a major instability developing later
on, followed by divergence.  On the other hand, the PGT
AURT, under the same conditions, offered instability-free
convergence.  Based on these experiments, we conclude that the
main advantage of the AURT algorithm is its stability, while
preserving an acceptable learning progress rate.

5. SUMMARY

We have described a novel approach to Automatic Language
Identification (LID), involving Perceptually Guided Training
(PGT) and Recurrent Neural Networks.  PGT is based on
locating and utilizing Perceptually Significant Regions (PSRs),
the utterance regions that are particularly significant
perceptually for the language identification process.  We
demonstrated that PGT improves the LID training performance,
with consistent improvements of around 9% versus the non-
PGT mode.  We suggested that intra-utterance acoustical

context is particularly critical (and extensive) in LID.  We
proposed Recurrent Neural Networks as the central
identification architecture, motivated by a capability of an
implicit inclusion of that context via the feedback mechanism of
the RNN.  Our approach does not require phonetic labeling or
transcription of the training data.  We proposed several
algorithmic directions for RNN training in LID.  These include
the Aperiodic Update Recurrent Training (AURT), and LID-
related modifications to the Backpropagation Through Time.
We have shown experimentally the convergence and the
feasibility of RNN training for LID, when the algorithmic
solutions we have proposed are employed.  The LIREN/PGT
system we have developed implements our approach to LID.
Experimental aspects included LID experiments with English,
German, and Mandarin Chinese, using the OGI-TS speech
corpus.  The results of our experiments demonstrate the promise
of Perceptually Guided Training, and Recurrent Neural
Networks, for Automatic Language Identification.
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