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ABSTRACT 2. PHONEME SIMILARITIES

In this paper we characterize the sensitivity of two speakePhoneme similarities can be computed from any fixed frame-
dependent isolated word recognizers toward several kinds mite acoustic analysis, such as LPC cepstral coefficients or
variability and distortions; namely noise, channels, distance fiiter-bank energies. A fixed number of consecutive analysis
microphone and target language. Both recognizers usevectors are concatenated to form time-spectral pattern vectors. If
phoneme similarity acoustic front-end as a rich representatitife time-spectral pattern vectors in egdioneme class p are
for speech from which reliable features are extracted. A crosadequately described by normal distributions with separate
correlation test showed that a phoneme similarity front-end fseans |f,) but common covariance (W), a time-spectral
more robust to variability and distortions (especially intrapattern vectoX can be classified in the phoneme class p which
speaker variability) than a LPC cepstral front-end. The firghaximizes the linear classification functibp:

recognizer Condor) uses a frame-based approach while the

second Rasha) uses the phoneme similarity information — 1INy _ -1

contained in a small number of speech segments. The two LP - (ZIJPW )X (HF’W Up)

recognition methods are presented with a special emphasis on

the robustness improvements and computational trade-offs thafoneme similarity valuegS,) are in the form of posterior
have been made. Experimental results are reported for car nQiggpapilities, and are computed from the linear classification

at different speeds, speakerphone versus handset input int@ftion by exponentiation and scaling of the vector of P linear
office environment and several target languages. Recogniti@fyssification functions to unit norm.

accuracy greater than 94% was achieved in a car environment at
60 mph Condor) and recognition accuracy greater than 95%

was achieved for speakerphone input at a distance of 50 cm. in al P )
" . —_ p al;
an office environment. S p — € Z e
=1

1. INTRODUCTION

Phonemes are essentially discriminated by spectral trajector,
which extend well beyond the 10 to 20 millisecond

Qgreasing the constant exponential facmy émphasizes the
imilarity values of the dominant phoneme, and inhibits the

encompassed in short term spectral analysis metho sser phonemes in the vector of similarity values. The result is

Concatenating consecutive analysis vectors into a time-spect "fu th_e time series of phoneme similarity values may be
pattern (TSP) vector capture these trajectories. To use thé®: _rommate_d as a near-zero b_ackground Ieyel .punctuated by
long feature vectors in spch reognition, however, requires an regions of high phoneme similarity as shown in Figure 1.
efficient representation; one such representation is phoneme
similarities. Phoneme similarities have been used feedp
recognition in frame-by-frame dynamic programming matching W A IH P
procedures [1,2,3,5], a continuous density HMM [1] and a -—f'\/ L —a e 0 m—j \__:
matching procedure based on regions of high phoneme

similarity [3,4,5]. As phoneme similarities are computed over

several consecutive frames of speech, they capture both static Figure 1: Phoneme similarity values versus time
and dynamic spectral characteristics. They have been shown to  for two major discriminating phonemes in the name “Will”.
be relatively insensitive to variations between speakers [2] for

recognition of isolated words.

la

A training procedure for phoneme similarity reference models,
based on the TIMIT database, was presented in [5].



3. ROBUSTNESS 3.2. Speech Equalization

3.1 Comparison of LPC Cepstrum Features Speech equalization is a noise-masking technique that was
o recently developed. It aims at decreasing the mismatch between

and Slm"a“ty Features training and testing utterances especially in the case of

A cross correlation test was used to quantify the benefit ofBISmatch channels such as handset and speakerphone
similarity feature based approach over raw cepstrum featurdgicrophones. The equalization is done in the time domain and
To compare each approach, pairs of utterances were aﬁg,{gdherefore fairly inexpensive. It is driven by three targets: a
using dynamic time warping. Between the pair, the crogdannel spectral shape, a background noise level aneealsp

correlation coefficient was computed for each feature as givé@-noise ratio (SNR). After applying a channel-dependent filter,
by the following equation: the equalization procedure adds noise to the input signals to

keep the background level and the SNR near their respective
. ”ZX'Y.'(EXEY.) targets in real-time. In the case of the handset/speakerphone
2 2 2
5 X~ x) gy - Y)

problem, the method is used to transform handset data into
speakerphone data.

For the cepstrum, the correlation coefficients were averaggj'B' Automatic Endpomt Detection

over its 12 features. For the similarities, the 12 phonemes Wiy petter cope with speech, channel and environment
the greatest coefficients were averaged. Figure 2 shows thafiapility, a loose endpoint detection strategy was elected. In
similarity features are consistently more repeatable acrogfect the recognizers use other sources of knowledge (e.g.
similarity background noise) or spotting techniques to better
refine those endpoints. To deal with fairly noisy environments
such as the car, energy based endpoint detectors are not robust
enough. In such cases, spectral subtraction and band-pass
filtering (300-3400Hz frequency band) was used to generate
more accuraterglpoints.

4. SPEECH RECOGNITION METHODS

Phoneme similarities is a rich and redundant form &fesh
representation that may be used for speeabgretion in many
ways. However robust feature extraction techniques are
generally required when targeting low-end hardware platforms.
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Figure 2: Similarity vs. LPC Cepstrum Cross-Correlation.

Such techniques include:

matched conditions and various mismatched conditions, such as
different talker, different speed of car noise or handset (HS)
versus speakerphone (SP). On the telephoeechp each value

was computed using 100 utterances (about 85 seconds) versus
25 utterances (about 15 seconds) on the ceectp Roneme *
models were tuned to a car environment using multi-style
training (see below) but not to the handset/speakerphone,
environment.

3.1. Multi-style Training

Training utterances may be artificially modified by additive
noise or linear filtering, and re-used as additional training
repetitions. This simulates more varied testing conditions at

aligning time series of multiple high phoneme similarities
and delta similarities frame-by-fram&dg¢ndor system
described below).

aligning reliable regions of high phoneme similarity (TC
stage inAlibaba [4]).

comparing the number of high phoneme similarity
regions found in a fixed number of segments in the
utterance (RC stage Aibaba [4]).

comparing the typical similarity level found in a fixed
number of segments in the utterandgagha system
described below).

training time and results in useful statistics on the variability of. ] . Similarity Frame-Based Method

features used for recognition. This multi-style training

technique is used 1) for the training of phoneme referenddie Condor system performs frame-by-frame alignment of the
models and 2) for the training of word models. For the crostime series of phoneme similarity vectors for an unknown
correlation experiment described above, clean data and cldé#terance to a frame-based word reference. Each word reference
data plus car noise at 5dB SNR was used. Multi-style training frame contains the N similarity values and N delta similarity
the case of a phoneme similarity front-end with additive nois¢alues of largest magnitude, and the corresponding 2N
was shown in [5] to decrease isolated word recognition errghoneme identifiers; typically, N is set to six out of a total of 55
rates rate by 45 to 51% for multi-style training of both phonemihonemes. Word references are created from one or several

and word models.

training utterances by aligning the training utterances with



dynamic time warping and averaging the frame data. The lod@bndor andPasha make good use of phoneme similarities in
distance for the alignment is a convex combination of the cositiee sense that they both achieve high resolutio@dndor the

of the angle between the test and reference similarity vectdrigh resolution is in the time domain while Rasha the high
and the cosine of the angle between the test and reference dedtolution is in the phoneme domain.

similarity vectors [2].

Condor has relatively large word reference models, and high 5. EXPERIMENTS

computational complexity. However the high redundancy in thRecognition accuracy has been evaluated for eadymezr in
speech representation due to storing multigghoneme separate conditions.

similarities at small time increments affords more robust

performance in severe environments, such are the car. 5.1. Car Environment (Condor)

4.2. Similarity Segment-Based Method Ten subjects recorded 25 common English names in one of two
compact cars with a microphone mounted on the sun-visor. The
Unlike Condor, the Pasha system uses a segment-based

approach to represent words. It is a robust extension of Testing Condition Recognition
Alibaba’s fast-match stage (RC stage) presented in [4]. The (Speed) Accuracy
recognition strategy in RC was based on the number of high Parked 99.2
similarity regions found igach segment. While it performed 30 MPH 088
well as a fast-match stage (top 10 candidates), it was not found 60 MPH 94.6

accurate andobust enough as a recognizer especially in the — - -
case of noise and channel mismatch. The degradation was 'able 2 Recognition accuracy in a car usidgndor on
shown to come from 1) the segmentation method (segments 25 names with automatic endpoints
were |dent|f|ed by dividing the utterance |nt9 S segmen.ts ?{?ndor system was trained with two repetitions of the
equal duration) and 2) the use of thresholds in the detection 0 . . . "

. L - e ST . vocabulary while parked. Testing was done with one repetition
high similarity regions within the similarity time series. In

) . . ecorded while parked, one at 30 miles-per-hour, and two at 60
Pasha, the segmentation was greatly improved and instead of a -
. . . miles-per-hour (see Table 2). Taccount for the noise
discrete approach a continuous approach was implemented, 10

h . . . L . variability, multi-style training and spectral noise subtraction
account primarily for the information held within the high Y, y 9 P

o . was used.
similarity regions.

In Pasha, an input utterance is first divided into S segment§.2. Office Telephone Qasha)

such that the phoneme similarity density over all phonemes is

equal in each segment. In this process, the similaritje€n subjects recorded 100 common English names (50 first
background is subtracted out to better cope with potentiBpmes and 50 first and last names) in an office environment.
automatic endpoint errors. Then the average Root Sum SqudMio training and one testing repetition were recorded on the
(RSS) value of eacphoneme segment is Computed a|or|g Witmandset of a Panasonic DBS key telephone. Additional testing

its variance (used as a weighting factor) over the traininggpetitions were recorded on the speakerphone microphone
utterances. while the speakerphone was at 50 or 100 centimeters from the

talker. Table 3 shows the improvements in accuracy gained with
This method allows for a static alignment of the test utteran¢ge word modeling ifPasha over the original RC modeling in
that is word-independenPasha has small word reference Alibaba for handset and speakerphone channels. In this
models and low computational complexity, while givingexperiment, the same front-end (i.e. segmentation by equal
adequate recognition accuracy in home or office environmentsphoneme similarity density, multi-style training, esgh

equalization) was used.

Condor Pasha Word Modeling
Time Increment Frame (50/sec.)  Segment (3/word) Testing Condition RC stage Pasha
Alignment Method | Dynamic Time None (counting high | (summing squared
Warping (Static Alignment) similarity regions) | similarity values)
Local Distance Correlation | Weighted Euclidean Handset 94.6 98.3
Cosine Distance Speakerphone (50 cm) 86.4 95.2
Word Model 330 /word Speakerphone (100 cm) 82.0 93.0
1200/sec.
Parameters (55 phonemes) K "
Compacted Word Table 3 Speaker-dependent recognition accuracy
Model Size 800 bytes/sec. 110 bytes/word on 100 common English names with automatic endpoints

in an office environment.

Table 1: Comparison of recognition methods used
in Condor and Pasha systems.

5.3. Robustness to Different Languages

For each of three mguages, two native talkers recorded 100
common names in their language (50 first names and 50 first



and last names) in an office environment. The training and

testing conditions were similar to the experiment described i

section 5.2. Table 4 shows that a phoneme similarity front-engt

using only English phoneme models performs fairly well across

languages. Further improvements could be achieved. In the ca

Testing Condition 37 Phonemes 55 Phonemes
Handset 97.9 98.3
. Speakerphone (50 cm 94.7 95.2
cSpeakerphone (100 cm) 92.1 93.0

of the porting to a different language, specific phoneme model
can easily be built for that language. In the case where the
vocabulary itself is mixed, a multi-lingual phoneme set could be
used.

Table 5 Speaker-dependent recognition accuracy using the
Pasha recognizer on 100 common English names for different
phoneme sets with automatic endpoints.

7. CONCLUSIONS

Target Language Handset Recognition Accuracy
Chinese 97.9
French 97.4
German 97.9

Table 4: Speaker-dependent recognition accuracy for
three target languages using Besha recognizer on
100 common names in an office environment with
automatic endpoints.

6. IMPLEMENTATION ISSUES

Both recognition methods have been implemented to run

Phoneme similarities have been shown to be more robust than
LPC cepstral parameters to speaker or channel variation. In
addition robustness to noise and channel degradation can be
further enhanced by inexpensive techniques such as multi-style
training and speech equalization.

Multiple phoneme similarities present redundant information
and can be the basis for different word representation methods,
having different size, complexity and accuracy trade-offs.
However the identification (e.g. high similarity regions, top N
high similarity values per frame) and extraction (e.g. discrete vs.
ntinuous extraction of high similarity regions as in the RC

real-time on small hardware using a TMS320C203 fixed-poirjst
DSP processor [6]. Speechdpoint detection, LPC analysis
and phoneme similarity computations are all done frame-
synchronously.

tage andPasha respectively) of reliable features is critical
é/vhen dealing with adverse conditions.

In theCondor system the DTW matching Recognition systems based on phoneme similarities can be

procedure is also done frame-synchronously every 20ms. faplemented in small hardware and achieve high recognition
Pasha’'s segmentation depends on the word endpointaccuracy in a variety of real-world operatirgnditions.

recognition processing is not frame-synchronous. However, as
its recognition complexity is small, recognition delay for an
approximately 100-word vocabulary is not metble.

6.1. Data Compression

Product-type applications are often very much driven by

hardware costs which requires the choice of recognition features
that remain robust even when compressed and/or quantized.
Similarity values have been found to preserve most of theif-
information when quantized to four bits. FurthermBesha'’s

word representation has been shown to perform equally well
when the information is stored on two bytes per phoneme
resulting in 110-byte word templates. 3.

6.2. Phoneme Inventory Size

Our default implementations d@ondor and Pasha use 55
phoneme units, corresponding to all TIMIT segments except tha,
closures, which were merged into their neighboring stop burst
segments. Based on hardware constraints and application
requirements, similarity front-ends can be downscaled to use
fewer phoneme units. Experiments with fesha recognizer
showed an average decrease in recognition accuracy of just
0.6% among all three testing conditions (Table 5) when only
using 37 phoneme units. The reduction from 55 to 37 phonemg
units represents a positive trade-off since the matching time and
memory required for storing the word models is proportional to
the phoneme set size.
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