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ABSTRACT 2. TASKS, CORPORA, AND CLASSIFIERS

This paper addresses the problem of acoustic phonetic modelinghonetic classification and recognition experiments were con-
First, heterogeneous acoustic measurements are chosen in oigigéted using the TIMIT acoustic-phonetic corpus [8]. In accor-
to maximize the acoustic-phonetic information extracted fromggnce with common practice [9], we collapsed the 61 TIMIT
the speech signal in preprocessing. Second, classifier systefels into 39 labels before scoring. Glottal stops were ignored
are presented for successfully utilizing high-dimensional acousor classification, but were retained for recognition. We used the
tic measurement spaces. The techniques used for achieving thegghdard NIST 462 speaker training set, and 24 speaker core test
two goals can be broadly categorized as hierarchical, committegat for final testing. An independent set of 50 speakers was used
based, or a hybrid of these two. This paper presents committegr system development. Word recognition experiments were
based and hybrid approaches. In context-independent classifigrerformed using theur i TERtelephone-based weather informa-
tion and context-dependent recognition on the TIMIT core tesfon task [4]. Mixture diagonal Gaussian classifiers were used in
set using 39 classes, the system achieved error rates of 18.3jfexperiments. Normalization and principal components anal-
and 24.4%, respectively. These error rates are the lowest Wsjs were performed to whiten the feature space. For TIMIT,
have seen reported on these tasks. In addition, experiments Wi segment models described below used a minimum of 61 data
atelephone-based weather information word reCOgnitiOﬂ task |%|nts per mixture Component and a maximum of 96 mixtures

to word error rate reductions of 10-16%. per phone; the boundary models used a minimum of 10 data
points per mixture component, and a maximum of 100 mixtures
1. INTRODUCTION per linguistic unit. Model aggregation [6] of 4 training trials per

assifier was used for all TIMIT experiments to improve the per-

The acoustic-phonetic modeling component of most currerf(J d robust fth dels. RovITER the cl
speech recognition systems calculates a small set of homg@; Mance and robustness of tné modets. R the clas-

geneous frame-based measurements at a single, fixed tirr?éf!er used a minimum of 50 data points per mixiure component,

frequency resolution. This paper presents a contrasting aggid a maximum of 50 mixtures per linguistic unit. Aggregation

proach, using more detailed and more diverse acoustic measu as not used foSUPITER
ments, which we refer to as heterogeneous measurements. Di-
verse measurements are obtained by varying the time-frequencﬁ' HETEROGENEOUS MEASUREMENTS

resolution, the spectral representation, the choice of temporal ba- divid . . |
sis vectors, and other aspects of the preprocessing of the spe faivide acoustic measurements into segmental measurements,

waveform. Using a wide variety of measurements leads to high! ',f:h are calculated based on a start _and end time, and “bc_)und-
dimensional acoustic measurement spaces. This presents a cfigd-’ or Iandmarl_g measurements which are calculated using a
lenge because the amount of training data needed to train a Cﬁgﬁ_gle t|_me Specification. Figure 1 summarizes the characteris-
sifier grows exponentially as the dimensionality increases. ThiEs of eight segmental (S1-S8) and five boundary (B1-B5) mea-

potential difficulty is avoided by dividing the measurements intgurements used in subsequent experiments. In all measurements,

subsets and training a separate classifier for each subset of mr%ér_ame rate of 200 frames per second (5 ms per frame) was used

surements. The problem is thus transformed into determini I short-time Fourier ransform (STFT) analysis. The first col-
how to combine the outputs of multiple classifiers. In our pre mn is a label for ease of reference. The second column indicates

vious work [5], we reported on hierarchical technigques for comtlé number of dimensions in the measurement set. For B1 and

bining classifiers. This paper focuses on committee-based 2?-2' Ithg nOtat'OmO(;L = 68 mdmﬁtej_ that p_nnc:pal cforr?ponents
proaches including voting, linear combination, and using an i analysis was used to reduce the dimensionality of the measure-
dependence assumption. Hybrid methods combining eIemerﬂEents from 104 to 60. The third column indicates the duration
of hierarchical and committee-based approaches are also pp%_mllllseconds OT the Hamming W'“dOV.V for short-time Fourier
sented. Phonetic recognition and telephone-based word rec(;%a_nsform analysis. The fourth column includes the spectral rep-

nition experiments show that these techniques generalize WeII? sentation, which T?I/Emdug? MFCCs or PI_‘PCC;& energy,_:%w
a variety of tasks and acoustic environments. requency energy (LFE), and/or zero crossing (ZC) rate. The
fifth column indicates the temporal basis that was applied. In

1This material is based upon work supported by the National Science Fouﬁ’—"_"ch case, the temporal basis was applie_:d as an inner product
dation under Grant No. IRI-9618731. with the frame-based spectral representation. For the segmental




# | STFT Spectral Temporal equation for the scores is

Dims | [ms] | Representation Basis
S1 61 10 12 MFCC 5 avg N -
S2| 61 | 30 12 MFCC 5 avg (@) =3 gin Pnlfnlow)
S3|| 61 | 10 I2MFCC | 5 cost 30ms ot > pu(fala)
S4 61 30 12 MFCC 5 cos+ 30ms acA
S5 64 10 9 MFCC 7 cos+ 30ms . N
S6 61 30 15 MECC 2 cosL 30ms where the weightgy, ,, have the property", _; gkn =1 Vk.
57 61 20 12 PLPCC 5avg Th_us, the_ _weights may be clgssifier specific and/or linguistic
S8 61 50 12 PLPCC 5cos unl_t specific. All _of the experlments_ reported here use equal

weights. Alternatively, however, weights could be trained on

B1| 104 | 30 12 MFCC+ 8 avg a development set using a Maximum Likelihood (ML), Linear

= 60 energy 5102040 Least-Square Error (LLSE), or other criterion in order to auto-
B2 || 104 | 20 12 PLPCC+ 8 avg matically learn appropriate weights.

=60 energy 5102040
B3 60 30 12 MFCC 5 cosz 75ms The third method is to combine classifiers by assuming statis-
B4 60 30 12 MFCC+ZC+| 4 cos+ 50ms tical independence among té random vectordi, f, ... fn,

energy+LFE which leads to the expression

B5 60 10 10 MFCC 6 avg 20 20 20

N —
Q(Qk) = H pn(fn|04k)

n=1

Table 1: Segmental and boundary measurement set summary.

measurements, the cosine temporal basis extends 30 ms bey
the start and end of the segment on both sides, indicatetBby
For the boundary measurements, the cosine basis extended 5
75 ms to either side of the boundary. For segmental measu
ments, the “5 avg” basis consists of averages over the segm
in a 3-4-3 proportion, and also includes a 30 ms average on ei-
ther side of the segment. For the boundary measurements, the
“8 avg” basis consists of symmetric, non-overlapping averages 1 .
over 5, 10, 20, and 40 milliseconds (indicated by 5 10 20 40) [3],

for a total extension of 75 ms to either side of the boundary. The

M feature vectord:, fo, ... fx in our experiments will se-
6“3\15')’ violate the independence assumption. In spite of this,
r%r_npiri(:al results demonstrate that this algorithm is an effective
émathod for combining the outputs of multiple classifiers.

5. EXPERIMENTAL RESULTS

Comparing Committee-based Methods

Combining Segment Models using Linear Combination
T T

width of the average is increasing as the distance from the boun = i ‘ ‘ ‘ ‘
ary increases. Similarly, the “6 avg” basis consists of symmetric
: o .
non-overlapping averages over 20, 20, and 20 milliseconds, fc 2 < + Unigram: % change in mean=16 )
a total extension of 60 ms to either side of the boundary. " ©  Bigram: % change in mean=13.3
21l + X Trigram: % change in mean=12.7 i

4. COMMITTEE-BASED METHODS
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T

In this section, three methods are described for committee-bast
combination of classifiers. Let = {a3, as, ...} be an ordered
set of linguistic labels. Considéy classifiers which have been
trained to discriminate among the elements4of These clas-
sifiers may, in general, be defined over different measuremel
input spaces. Thus, for each input token and each classifier,
there is a corresponding vector of measurements we denote |
ﬁ, For each token, Iefbe the column vector containing all of
the measurements, that i§,= [ fI ... f5]", where” de-
notes the transpose operator. For each A and each classifier,
let p,,,(f,ﬂ,,,|a) be the scalar value of the conditional probability

density function (pdf) off.,. For each input token, the output \we compare the results of using voting, linear combination, or
of the acoustic modeling system is a vector of sceresth one 4 jndependence assumption for combining multiple classifiers
entry for each linguistic unit. in the task of TIMIT phonetic classification. Rather than testing

The first method is to combine classifiers using voting. The ou"ly & few configurations, Figures 1 and 2 show the performance
put is the vector of scores from one of the individual classifier2f all possible subsets of the eight segmental measurements S1~
Ties are resolved by defining an ordering of the classifiers. ~ >° 1hese figures show error rate versute number of classi-

fiers in the subset. For better viewing, individual data points are

The second method is to combine scores linearly. In this teclevenly spaced along the x-axis in the vicinity of the appropriate
nigue, which we refer to as weighted linear combination of likevalue ofk. Lines connect the mean values. The total number of
lihood ratios (WLCLR), a likelihood ratio is used to normalize experiments for each phonotactic model is the sunk fequal to

the absolute magnitude of the pdf values across classifiers. Theéhrough 8 of “8 choosg”, which is 255. Unigram, bigram, and
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Figure 1: Combining classifiers using Linear Combination.



Combining Segment Models using Independence % Error

2 e ‘ ‘ ‘ ‘ Methods Dev | core
ool o PR - | V_oting (81—8_8) _ 186| -
P e e [inear Combinafion (51-58) || 184 =
b . X Trigram: % change in mean=14.8 Independence (S1-S8) 185| -
Hybrid: Committees at nodes of tree18.3 | —

20| Hybrid: S1-S8 + Hierarchy 18.2| 18.3

Table 2: Summary of TIMIT ClI classification results.
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Classification Error on TIMIT Dev set

Core Test set
e Acoustic Measurements % Error | % Sub
avg of 1 seg + antiphone 30.1 19.0
vr avg of 1 seg + near-miss 28.7 18.0
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ 5 segs + antiphone 21.7 16.7
0 t 2 3 4o S 6 7 8 avg of 1 bound 27.1 16.5
Number of classifiers (k) _
) o -~ ) 5 segs + near-miss 26.4 16.1
Figure 2: Combining classifiers using Independence. 5 bounds 24.9 14.9
trigram phonotactic models were used. The results indicate that 2 S€gs : 2 Eoungs : nea}r—?ms gji iig
indirect learning of phonotactic information has very little effect, S€gs ounds + antiphorje : :

since using multiple classifiers improves phonetic discrimination Table 3: Summary of TIMIT phonetic recognition results.
regardless of which phonotactic model is used. In addition to

Figures 1 and 2, Table 2 summarizes some of the best CI clasphonetic classes. Let us refer to the class-specific hierarchical
fication results. measurement sets as SV, SN, SF, and SS, representing segmental

) _ vowel, nasal, fricative, and stop measurements, respectively. For
In the unigram case the three methods of voting, WLCLR, and,ample, we formed a hierarchy-of-committees classifier using:

independence produce similar performance. In contrast, in tlgel’ S2, S4, and S5 at the root node: SV, S1, S4, S6, and S8 at the
bigram case, voting with 8 classifiers obtained 18.9%, which i§'owel node: SN, S2. S3, and S4. at the nasal node: SF, S1, S2,
actually worse than the 18.6% that was obtained with voting iR, 4 53 at the fricative/closure node: and SS, S1, S2, S5, and S8
the unigram case. This is probably because voting lacks softy the stop node. Each of the committees was combined using
decision capability, and thus it does not improve the quality of, j,qependence assumption. This resulted in a performance of
the entire vector of scores, but rather focuses only on the quailgs% on the development set, as shown in Table 2. This hier-

ity of the top choice. The WLCLR and independence methodg,-ca| configuration suggests that computation can be reduced
produce favorable trends with all three phonotactic models, alyith minimal degradation in performance by targeting the mea-

though the independence assumption performs slightly better Q;ements toward particular phone classes.
average. In addition, the independence method is less expensive

to implement, since the log scores can simply be added togeth&he second hybrid approach is to use a hierarchical classifier as
and it does not require calculation of a likelihood ratio. For thesene member of a committee. An implementation of the hierar-
reasons, the remaining experiments with hybrid techniques, phohical classifier from [5] was added as a ninth member to the
netic recognition, and word recognition all use the independengeeviously 8-member segmental measurements committee. The
assumption to combine committees of classifiers. 9 classifiers were combined using independence to obtain 18.2%

on the dev set, and 18.3% on the core set. This resultis a 12.9%

Consider a pairwise distance metric between classifiers as thg,rovement over our previous best reported result of 21.0% [5].
number of tokens which they classify differently on the dev Setrpg next best result that we have seen in the literature reporting

Now generalize this metric to/ classifiers by adding the pair- 1\\1iT CI classification on the core test set is 23.0% [14].
wise distance between all classifiers in the set. We found that

this generalized distance metric was correlated with the conk 3. Phonetic Recognition

bined classifier performance. We observed correlation coeffi-

cients with magnitudes in the range of 0.45 to 0.63. Higher dis9ur TIMIT phonetic recognition experiments make use of a seg-
tance metrics led to lower error rates. Thus, given a set of clagient network produced by a first-pass recognition system. We
sifiers, this metric can be used to predict which classifier combrefer to this step as probabilistic segmentation [1, 2, 10]. Either

nations are likely to perform well. antiphone modeling [3] or 1-state near-miss modeling [1, 2] was
] ) ] used with segment models in order to account for both on-path
5.2. Hierarchy/Committee Hybrids and off-path segments in the segment network. All the phonetic

) ) . recognition results make use of a phone bigram with a perplexity
In [5], we presented a MAP hierarchical approach to combings 15'g o1 the core set.

ing multiple classifiers. In this work, we have implemented two

ways to combine hierarchical and committee-based approachd@sble 3 summarizes a series of phonetic recognition experi-
The first hybrid approach uses a committee of classifiers at eagfents. The acoustic features for these experiments were S1,
node of a hierarchical tree. We implemented a hierarchical cla§2, S4, S5, S7 and B1-B5 from Table 1. The “avg of 1 seg”
sifier as in [5], which uses different measurements for differerdnd “avg of 1 bound” rows refer to the average performance



% Error This work has not been concerned about computational cost. In
Method core fact, usingV different measurement sets increases the acoustic
Triphone CDHMM [7] 27.1 modeling cost by a factor a¥ in both memory and computation.
Recurrent NN [13] 26.1 Future work could consider how to obtain similar performance
Bayesian Triphone HMM [12]| 25.6 improvements at a much lower computational cost.
Near-miss [2] 25.5 There is still a large gap between human and machine speech
Heterogeneous Measuremerjfs 24.4 recognition ability, and current speech recognition systems rely

more heavily on language models than humans do [11]. Once
low-level acoustic-phonetic information is blurred or lost, it can-
not be regained by subsequent processing, although the loss of

Table 4: Phonetic recognition results on TIMIT core set.

| Acoustic Measurements || % Error | % Sub]

Bl 11.3 6.4 acoustic-phonetic information may be masked by the applica-

B4 12.0 6.7 tion of higher-level lexical and linguistic constraints. Consid-

B3 (altered) 121 6.9 eration of the results in this paper in light of the fundamental
| 3bounds Bl + B4+ B3(altj| 101 | 55 | limits on time-frequency resolution and the non-invertibility of

many preprocessing algorithms suggests that speech recognition
systems of the future will need to include diverse acoustic mea-
surements. In this way, more acoustic-phonetic information will
over 5 experiments where each measurement set was usedgyretained, the dependence on statistical language modeling will

itself. For the segmental performance, we report cases of Usipg decreased, and the gap between human and machine speech
both near-miss modeling and antiphone modeling. When usingcognition performance will be narrowed.

the antiphone, combining 5 segmental measurements reduced
the error rate from 30.1% to 27.7%, which is a 7.9% reduc- 7. REFERENCES
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5.4. Telephone-bandwidth Word Recognition 7

Finally, in order to verify that these techniques generalize
to word recognition, we performed experiments using the
telephone-baseduPITER weather information server task [4].
This particular configuration used an 1893-word vocabulary and
a class bigram language model with a perplexity of 15.2 on the
1806 utterances in the test set. We trained three sets of boundagy
acoustic models (see Table 1), corresponding to B1, B4, and a
variation of B3 with the STFT analysis window changed to 10
ms. Table 5 summarizes the results. Combining three boundaqy
models led to error rate reductions of 10-16%, and substitution
error rate reductions of 14-20%. These results confirm that thege
techniques generalize well to word recognition in a telephone
bandwidth acoustic environment. 12.

6. CONCLUSIONS 13.

We have shown that heterogeneous measurements can be use
to increase the acoustic-phonetic information extracted from
the speech signal, and that combining multiple classifiers s
an effective way to harness the discriminative ability of high-
dimensional acoustic spaces.
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