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ABSTRACT nition hypothesis. Another cue to a poor hypothesis can be pro-

) ) . vided by the language model score. Often when confronted by
This research investigates the use of utterance-level features B?It-of-vocabulary items, the recognizer will hypothesize an un-
confidence scoring. Confidence scores are used to accept origa|y sequence of words in an attempt to match at the acoustic-
ject user utterances in our conversational weather informatiqfhonetic level. Finally, whetv-best outputs are computed, the
system [10]. We have developed an automatic labeling algorithiative scores of successive hypotheses can be an indication of
based on a semantic frame comparison between recognized 8Bgognizer confidence. In addition to the speech recognizer, the
transcribed orthographies. We explore recognition-based fegzyra| language component can also provide valuable informa-

tures along with semantic, linguistic, and application-specifigion For example, it is extremely useful to know if the utterance
features for utterance rejection. Discriminant analysis is used,, pe parsed, and how likely that parse is.

in an iterative process to select the best set of classification fea-

tures for our utterance rejection sub-system. Experiments shdwthis study we concentrated on utterance-level features because
that we can correctly reject over 60% of incorrectly understooduch features are easily computed and can alleviate the need to
utterances while accepting 98% of all correctly understood uttecombine individual word confidence scores into a meaningful
ances. rejection score for the entire utterance.

1. INTRODUCTION In this paper we describe our method for automatically tagging
training data for rejection or acceptance based on meaning rep-
Since 1989, our group has been developing conversational sygsentation. We then present the procedure used to identify sen-
tems for human-machine interaction. In the majority of thesgence level features which could be used for rejection. Finally,
systems, understanding has been predicated upon either a catie- describe a series of classification experiments we have per-
plete or partial linguistic analysis of one of the tdp(e.g., 10) formed using a telephone-based spontaneous-speech corpus.
sentences hypothesized by the recognizer. When no such anal-
ysis was available, an input utterance would be rejected from 2. EXPERIMENTAL CORPUS
further processing. While simple, this method proved effective
for both common evaluation and experimental systems [1, 2, 4RIl experiments were based on telephone data collected from
users interacting with ouruPITER weather information sys-

Recently, we have deployed a telephone-based conversatioggh [10]. These data have been continuously collected via a
system with much wider access to the general population [104|free number since the spring of 1997 using an experimen-
Our observation of user behavior with this system led us to bgy| prototype. To date we have collected and orthographically
lieve that a more sophisticated form of rejection was necessaginscribed over 59,000 utterances from over 10,560 callers. A
to reduce the number of utterances which were being incorrectfysseline recognizer was trained on a subset of these data. On
understood and answered. We believed that it would be advantg, independent test set, the word error rate was 15% [3]. All
geous for the system to reject a misunderstood, or out-of-domajgjection experiments were based on three sets of data indepen-
utterance, rather than provide a possibly lengthy, incorrect rgfant from the training data. Final testing was performed on yet
sponse. Therefore, the goal of our research on utterance rejegiother independent test set.
tion was to eliminate incorrectly understood sentences as much
as possible, while continuing to accept all utterances which were 3. AUTOMATIC ANNOTATION
correctly understood.

Unlike most work on confidence measures, which is based on

Different SySteT“. components can reject a user utte_ran_ce. T rd-recognition, we were interested in identifying utterances
speech recognition component can make use of the likelihood hich were incorrectlyinderstoodIn our initial work, we man-

the acoustic models for ahypothes,lzgd word sequence. Phenplqa“y tagged data, based on examining the top three recogni-
ena such as out-of-vocabulary or partial words, extraneous noi

ianal ) tio will all tend t It fon hypotheses of each utterance and comparing them to the
or poor signa -to-n0|s_e ratio will afl tend 1o resuft in a poorerorthographic transcription. Each utterance could be tagged as
match with the acoustic models, and can be a cue to a poor reCQGfer ACCEPT. REJECT. or UNSURE based on the similarity

1This research was supported by DARPA under contract N66001-96-C-g52B€tween hypothesized and tf'ue OrthOQ_rath- The pr(_)blem with
monitored through Naval Command, Control and Ocean Surveillance Center. Such a procedure was that it was tedious to transcribe a large




ORTHOGRAPHY: RECOGNIZER HYPOTHESIS:

what what cities do you know in california what places do you know in california
{c wh_query {c wh_query
‘topic {q cities :topic {q cities
:quantifier which :quantifier which
:number "pl" :number "pl"
:pred {p in pred {p in
‘topic {q state ‘topic {q state
:name “california” } :name "california” }
:domain "Jupiter" } :domain "Jupiter" }

} }

Figure 1: Examples of matching semantic frames.

ORTHOGRAPHY: RECOGNIZER HYPOTHESIS:
yes please how about espaniola yes please how about aspen you a
{c what_about {c what_about

:random "please" rrandom "please”

:topic {q unknown_city ‘topic {g city

:name "espaniola" } :name "aspen" }
:subject 1 :subject 1
:domain "Jupiter" } :domain "Jupiter" }

} }

Figure 2: Examples of a mismatch of semantic frames.

set of utterances for training and testing, and the labeling would. FEATURES FOR CONFIDENCE SCORING

have to be redone every time a new recognizer was deployed. ) ] )
We have experimented with 2 types of features for confidence

We subsequently used these manually annotated data to devedgpring. In addition to the traditional, recognizer-based fea-
and evaluate an automatic annotation process. This processiuges such as acoustic scores commonly used in keyword spot-
based on a comparison of meaning representations producedthyy systems [7], we also investigated the use of linguistic and

a natural language parser [8] rather than on a comparison of refpplication-specific features (e.g., parse probability) described
erence transcriptions and recognizer hypotheses. This is moielow.

vated by our intention to compute a confidence measure based on

understanding. The reference transcription and ug tecogni- 4.1. Recognition-based Features

tion hypotheses for each utterance are parsed, and paired refer-_ )
ence/hypothesis semantic frames are generated. If a valid fratM@rious types of models and parameters are used in todays rec-
is generated for both the reference and the hypothesis, the nRgnizers. Their likelihood of fit to the data is an indication of
frames are compared to determine whether they are identicg@nfidence and hence can be used for rejection. Commonly used
both in structure and in content [6]. Figure 1 shows an exampfgatures based on these models are the acoustic and language
of two frames that are considered equivalent despite different ofoodel scores, the number of words and phones in the hypothe-
thographies. Figure 2 shows an example of a mismatch beca&s, and the number af-best hypotheses. Additionally, recent

of different city names in the orthography and hypothesis. If thavork in confidence measures suggests that features based on an

reference or the hypothesis, or both, fail to parse, they are ndpalysis of the structure of th¥-best recognition hypotheses
considered to match. can produce powerful rejection features, such as the A-stabil fea-

ture [7], or the posterior log-probabilities of aw-best list [9].
In the case of manual annotation, if one of the top three recogor our experiments, we defined a word score feature which was
nition hypotheses was marked ACCEPT, then the entire list dfased on the fraction a¥-best sentences in which a word oc-
utterances was accepted; otherwise, the list was rejected. To@red.
automatic procedure accepted an utterance if the semantic repre-
sentation generated from any of the tiprecognition hypothe- 4.2. Linguistic and Application-Specific Features
ses matched that generated from the orthography.

Linguistic features are based on parsing a hypothesis into a syn-
The automatic annotation agreed with the manual annotation actic and/or semantic structure, such as a semantic frame. The
1858/2051 cases (90.6% agreement). When the 193 disagregnality of the parse can be measured by the parse status such
ments were examined, 154 were resolved in favor of the autes full, partial, or no parse, and the parse probability, when it is
matic annotation and 39 in favor of the manual annotation. Asavailable.
suming the cases where manual and automatic annotation are
in agreement were correctly marked, the automatic annotatiegh3. Semantic Features
is 98.1% accurate. According to the automatic annotation, the
training, development, and test sets used for later experimerlfsour application certain words are semantically more important

had correct understanding rates of 63.6%, 56.6%, and 64.9% #an others: geography (e.g., city, state, and country names) and
spectively. weather-related words (e.g., rain, sunshine) are more important

than auxiliary verbs for example. Therefore, we have designed



Code Weight | Word Classes A set of 14 features automatically selected by the Fisher criterion
GEOGRAPHY 3 CITY, CITY _COUNTRY are shown in Table 2, in the order in which they were selected.
COUNTRY_TYPE The left column in the table identifies the type of feature used,
PROVINCE, REGION while the right column indicates which of th&¥-best outputs
STATE, OCEAN were used to compute the feature. For exampléydrest index
OCEAN.TYPE of 1 indicates that only the first choice hypothesis was used. This
CONTENT 2 DAY, DIGIT feature set achieved 60% correct rejection on the development
WEATHER ATTRIBUTE and test sets. The false rejection rate on the test set increased
WEATHER_NOUN, ... slightly to 3%. Additional classification experiments using neu-
FUNCTION 1 THANKS, QUANT, AUX ral network classifiers did not significantly improve the correct
DO, EXPECTED rejection rate.
CURRENT
OTHERS 0
FEATURE N-best Index
N-gram LM Score 1
Table 1: Semantic weights for the different word classes. Full/Robust/No Parse 1
Total number of hypotheses all
) ) Average acoustic word score 1
“semantic” features that try to measure the amount of informa-r4o¢ hypotheses with no parse before
tion contal_ned in a given utterance (semantic weight) and thg ihe first full parse all
difference in sem_antlc content bgtween two sentence_hypothes SDifference of word scores (nyp L-hyp2) 1&2
from the]_V-begt list (semgntlc dlstange). Each word in the vo- Ngram LM score/# of words 1
cabulary is aSS|gned aweight dependlng on the word class (tak " of hypotheses with no parse all
from the recognizer word-class bigram). Table 1 summarizes the -
word classes and weights used in our experiments Total acoustic score 1
' Sum of word score% 0.5 all
The semantic weight of an utterance is the sum of all semantig Sum of word scoreg 0.5 1
weights of the words contained within. The semantic distance| Acoustic score (hyp 1 - hyp 2) 1&2
between two utterances in tié-best list is computed using the | Acoustic score/# of phones 1
Levenshtein algorithm [5]. The insertion, deletions and substi-| # words with word score> 0.5 all

tution costs used by the Levenshtein algorithm are dependent on
the semantic weight of the words compared; for example, sub- o L i
stituting one GEOGRAPHY word for another GEOGRAPHY Table 2: Feature set selected via Fisher discriminant analysis.
word contributed to a high semantic distance (the two utterances
are referring to different cities and are hence a likely candidate
for rejection). We used the semantic weight of the best recog.2. Decision Tree Analysis
nizer hypothesis as well as the semantic distances between the
top three hypotheses as possible confidence scoring features.One problem with the Fisher classifier is that the different fea-
tures are combined into a single measure, making it more dif-
5. CLASSIFICATION EXPERIMENTS ficult to understand the importance of, and interaction between
. . . the individual features. We decided it would be interesting to
We used two q!ffer_ent a_pproaches_fo_r selecting p(_)tentlal featut® e now individual features could be used to partition the feature
sets for' classification: Ilngar discriminant ar_1aIyS|s (LDA), an%pace. The basic idea was to split off sets of tokens, where the
regression trees as described below. The Fl_sher LDA was usglgm set had a high percentage of accept or reject tokens (i.e.,
to creat_e_ a pool_ of f_ea_ture measurements which could be used gy purity). This might allow us to provide more useful feed-
a classifier to discriminate between the two classes. The secofdqy information as to why a particular utterance was rejected.
method grew a regression tree where splits were made to mini-
mize the impurity between the two classes. Classifiers were us&ggression trees were created by searching for the feature vector

at the terminal nodes of confusable cases. which could split a node (i.e., data subset) to meet purity and size
] o ) requirements. After a node had been split, all remaining nodes
5.1. Fisher Discriminant Analysis which did not meet the purity requirement were merged together

for subsequent splitting. If there was no split which met both

A Fisher LDA classifier was first used to select the best featurﬂ:]e purity and minimum size requirements, the purity constraints

set for this classification task. The feature sets were created \i/F/'ere relaxed and the search was repeated. A development set
eratively. On each iterationy feature sets from the previous |-« sed for cross-validation purposes.

iteration were each augmented with one additional feature from

the set ofM unused features. Th¥ « M new feature sets were While the resulting regression tree structure could be used di-
scored using LDA classification on a development set, and threctly as a classifier for utterance rejection, there was a greater
top NV feature sets were retained for the next iteration. The LDAlegradation in performance when moving from development to
threshold for each classifier was set to maintain a false rejectidest sets, when compared to our initial Fisher classifier exper-
rate of 2% on a development set. The procedure terminated whgnents. However, we did find the regression trees helpful for
no additional improvement was found. identifying features which were useful for confidence scoring.



System | Manual ACCEPT| Manual REJECT| Total Itis interesting to note that users are more likely to hang up after
ACCEPT | 14,075| 97.2%| 3,980| 36.7% | 18,055 the first rejection message than after they have received multi-
REJECT 412 28%| 6,879| 63.3%| 7,291 ple rejection messages, particularly if the utterance was rejected
Total 14,487 10,859 25,346 incorrectly, perhaps a sign that persistence pays off!

7. FUTURE WORK

Table 3: Confidence scoring results: the correct decision was

made in 82.7% of the cases ((14,075 + 6,879) / 25,346). The analysis of the user’s behavior to rejected utterances sug-
gests that more informative feedback is needed in order to pre-

vent error spirals. Therefore we intend to add word level con-

Orthography Best Hypothesis fidence measures to detect early problems with certain content
south texas how is texas words and hence will be able to say to the users “Did you say
what is the shrimp catch | whatis that i like in Boston, Massachusetts or Austin, Texas”. Similarly, we hope
like in new orleans louisiana new orleans lousiana to be able to use the decision tree described earlier as another
how about sydney | how about today source of information for improved user feedback.
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