
A LANGUAGE FOR CREATING SPEECH APPLICATIONS

Andrew Pargellis, Qiru Zhou, Antoine Saad, Chin-Hui Lee

Dialogue Systems Research Department
Bell Labs, Lucent Technologies

600 Mountain Ave.
Murray Hill, NJ 07974, USA

({anp, qzhou, saad, chl}@research.bell-labs.com)

ABSTRACT

This paper describes an embedded Voice Interface Language
(VIL) that enables the rapid prototyping and creation of
applications requiring a voice interface. It can be integrated into
popular script languages such as Perl or Tcl/Tk. Three levels of
single-word commands enable the application designers to
access basic speech processing technologies, such as automatic
speech recognition and text-to-speech functions, without
knowing details of the underlying technologies. VIL is a
platform and domain independent speech application
programming interface (API) that enables users to add a speech
interface to their applications. The domain dependent
components are defined by including a set of application specific
arguments with each VIL command. Since the platform is an
open architecture system, third party speech processing
components may also be integrated into the platform and
accessed by VIL.

1. INTRODUCTION

It has long been recognized that a voice user interface (VUI)
would be a useful, effective means of human-machine
communication. Various speech user interface demonstrations
and applications have been developed. Typical functions include
text entry, document editing, telephony interactive voice
response (IVR), conversational transaction systems, voice
command, and voice controlled information retrieval.

There are two major categories of voice user interfaces, multi-
modal user interface and primary voice user interface.
Applications in the first category include speech enabled desktop
applications, voice controlled information query, and voice
controlled transaction systems. Two typical applications in the
second category are telephony interactive voice response
systems and voice controlled access systems. In this paper, we
will concentrate on the second category, which is the main voice
user interface model for telephony applications.

We report here on the development of a simple, abstracted
(platform and application independent) voice interface language
(VIL) that facilitates the definition of a wide variety of
applications that require multi-modal user interfaces, including
speech. VIL is an embedded language module that enables
researchers and application developers to add a speech interface
to their applications rapidly. In current implementation, we
embedded VIL into Perl (Practical Extraction and Report
Language), a popular script language which has been widely
used in research and Internet application development.

The VIL is built on top of our speech technology integration
platform (STIP)[1]. A speech API interface class accesses
platform speech processing functions[2]. The interface functions
provide an advanced speech interface control such as ASR task
definition, barge-in, dynamic grammar loading, and text-to-
speech synthesis control. VIL also provides functionality to
write speech dialogue applications. In addition, a World Wide
Web (WWW) interface accesses the Internet, enabling
applications to retrieve information and conduct simple
transactions in real-time, as well as providing the necessary
HTML parsing functions.

We show an example that demonstrates the domain and task
independent nature of the VIL by including telephony,
information, and messaging services. The script is simple
enough that the VIL can be used for a variety of research
projects including an extension to other languages such as
Mexican Spanish[3].

2. SPEECH TECHNOLOGY
INTEGRATION PLATFORM (STIP)

In recent years, high performance speech processing
technologies such as automatic speech recognition (ASR) and
text-to-speech synthesis (TTS) are becoming available for many
applications. While there is continuous progress in speech
processing core technologies such as speech recognition, speech
synthesis, natural language understanding, and dialogue system
study; it is still nontrivial to design and deploy a speech-enabled
system for a wide range of real world applications, severely
limiting the deployment of speech enabled applications. On the
research side, we need a generic, flexible speech technology
integration platform to prototype various speech applications to
study real-world speech processing problems, such as speech
recognition robustness, speech synthesis naturalness, human-
machine spoken language dialogue design, etc.

To address these issues, we designed and implemented a
prototype platform to integrate various speech technology
components: speech recognizers (multi-types: finite-
state/context-free, n-gram natural language, multi-lingual), text-
to-speech synthesizers (multi-lingual), audio/telephony interface,
grammar generation tools, and web client interface.

Some of the platform design goals are: integrate speech and
internet technologies, create a research platform to study various
multi-modal user interface issues, enable rapid development of
VUI domain independent applications, scalable multi-channel
distributed processing across heterogeneous systems, and
integration of third party components into the system.

Figure 1 is the block diagram of the current platform. The
system is a three-tier client-server architecture where the
resource manager manages available service components and
distributes these services to applications through a client
application-programming interface (Client API). The Client API
is a set of a few C functions that provides necessary speech user
interface functions required in Figure 1 framework. By using

this API, a developer can create a speech user interface
application without knowing the details of speech technology,
audio or telecommunication interface hardware.

Gray blocks are under development. The curve connections
describe the speech audio stream data flows from audio interface
to ASR, and from TTS to audio interface. System component
communications are based on asynchronous message passing
mechanism to enable high throughput real-time performance.

Each application, consisting of a series of finite states, interfaces
to the Client API through the Dialogue/Application Manager
(AM). The various functions of the AM make up the VIL
commands. This provides a high level, intuitive API for
controlling the dialogue flow in a speech application prototype.
The AM libraries consist of VIL commands, each one of which
is an encapsulation of a Perl routine that performs some set of

dialogue and application related actions. These functions
comprise the Dialogue/Application Manager layer shown in
Figure 1 and enable a developer to control the Dialogue flow
between a human and computer at many different levels. For
example, the developer can fine-tune the Speech Recognizer for
a particular application, generate a multilingual dialogue flow,
access web sites over the Internet, and log system and dialogue
information in order to trace dialogue sessions. In all cases, the
same set of domain independent VIL commands are used, with
application specific arguments customizing the system.

Since Perl is one of the popular web common gateway interface
(CGI) programming and web client script language, this
approach also makes it easy to create multi-modal user interface
applications (both speech and web based graphic user interface).
By using SWIG (Simplified Wrapper and Interface Generator)
developed by David Beazley of University of Utah, we
generated a Perl speech interface function set easily from our
client API C functions. SWIG enables developers to generate
embedded speech user interfaces for other popular script
languages such as Python or Tcl/Tk.

3. VOICE INTERFACE LANGUAGE

The purpose of the VIL is to enable developers to rapidly
prototype applications requiring a speech interface to a human-
machine dialogue. There are many applications, in different
domains, that can utilize advanced speech technologies such as
ASR and TTS. These domains themselves consist of many tasks,
each with its own particular and special development strategy.
For example, implementing a natural language call router for
Call Center applications requires a backend ASR technology
that can be different from one used for a personalized name
dialer application. Every task is characterized by its own set of
variables and parameters and must deal with a large number of
issues that a developer must address. The VIL addresses these
issues by grouping a series of domain independent commands
that implement advanced speech technology functions. A
customized application is readily built by passing tables of
parameters and variables to VIL commands as needed. For
example, the STIP platform and VIL architecture allow the ASR
task to be dynamically selected at run time for each recognition
instance.

One of the challenges is to provide a developer with the
capability to fine-tune specific speech engines, such as ASR,
while also providing higher level functions such as a
prepackaged applet that downloads today’s news from an
Internet site. To this end; the VIL commands have been
organized into three different levels of complexity, shown below
in Table 1. The Low-Level commands are primitives that either
send specific arguments to servers or perform specific Dialogue
Management (DM) or Application Management (AM) tasks.
The Intermediate-Level commands act like macros that group
Low Level commands. The High-Level commands are mini-
applications that group the lower two levels of commands.

One set of Low-Level commands generates computer audio
prompts by sending an audio stream to the Audio server. So the
VIL command, PLAYTTS, sends a text string to the TTS server,
with the returned audio stream then sent to the Audio server,

Figure 1: Bell Labs Research Speech Technology Integration
Platform (STIP).

The Server SPI (Service Provider Interface)

Resource Manager/Proxy Server

ASR
Server

TTS Server
Audio
Server

GDC
Server

Telephon/Audio
Interface

Database
Server

Dialogue/
Application

Manager

The Client API (Application Programming Interface)

Dialogue/
Application

Manager

Dialogue/
Application

Manager
.

Application Application Application.

whereas PLAYSND sends a prerecorded audio file directly to
the Audio server. Similarly, several low-level commands enable
access to the ASR engine for speech recognition. A typical
recognition sequence would include the set of commands:
{ASR_PARAMS, ASR_CMD, ASR_GET, ASR_PROCESS}.
ASR_PARAMS sends a table of domain specific arguments to
the ASR server for every recognition request via the Resource
Manager/Proxy Server (RM/PS). The RM/PS pre-processes the
ASR_PARAMS table, determines the ASR engine type
requested, allocates the proper server for the duration of the
recognition task instance, and passes all required parameters to
that server. ASR_CMD sends a text string command to the ASR
engine. An example is "SetGrammarPath $GramPath" which
sends the required grammar file, tailored for a specific dialogue
state, to the ASR engine. ASR_GET requests the ASR engine to
convert the incoming audio stream to a text string and return that
string. ASR_PROCESS then processes the string. There are
several commands that perform Applications Management
functions. For example, AUDIO_CTL performs a set of
preprocessing functions, such as checking to see if a valid
grammar file has been defined for states that request ASR. An
output audio stream is then generated with the included
PLAYAUDIO command. This routes the output audio via
PLAYTTS or PLAYSND, depending on whether the developer
is using TTS or prerecorded audio files. Similarly, ACTIONS
enables a developer to include an optional set of special
subroutines and SWITCH routes the application flow to a new
state, depending on the recognized user’s response.

Low Level Intermediate Level High Level

ACTIONS AUDIO_CTL PASSWORD
ASR_CMD BARGEIN WEATHER
ASR_GET EXIT YESNO

ASR_ PARAMS LISTEN
ASR_ PROCESS PAUSE

DATAFIELD PLAYAUDIO
ERROR_AUDIO START

HELP WWWPROCESS
LOG

PLAYSND
PLAYTTS

RESET
STATE_INIT

SWITCH
TAG_DATA
WWWGET

Table 1: Categorization, by level of grouping complexity, of
some of the more commonly used VIL commands.

An example of an Intermediate-Level “macro” is LISTEN,
which groups the following set of low-level commands:
{ASR_PARAMS, AUDIO_CTL, ASR_CMD, ASR_GET}. A
developer uses LISTEN to simultaneously provide audio output
(computer query) and ASR recognition. The command,
BARGEIN, consists of the following set: {LISTEN,
ASR_PROCESS, ACTIONS, SWITCH}, which is a more
extensive VIL command. BARGEIN is a powerful VIL

command that allows VUI users to interrupt system responses
with voice inputs, similar to the use of DTMF in a touch-tone
IVR interface. This is especially useful in cases where the user
wants to interrupt the system because of a recognition error or
because the system’s prompt is a very long voice message.

An example of a High-Level command is PASSWORD which is
a miniature application that provides security access to a
particular service and includes the BARGEIN command with
associated ACTIONS. This applet includes several states that
provide a dialogue between the computer and human, with the
goal of providing a secure access to some service such as
banking transactions through speaker authentication.

4. SAMPLE APPLICATION

4.1. VUI Demo – General Features

Figure 2 is a schematic of an application referred to as the “VUI
Demo”. Most VIL commands were originally developed for this
application. All applications begin with a START state and end
with the EXIT state. The START state is a single VIL command
that opens Log files and server connections. The EXIT state (not
shown here, but accessed from the MAIN MENU state) closes
those files and server connections.

Figure 2: An overview of the Voice User Interface demo
functionalities.

MAIN MENU

VOICE
SERVICES

INFORMATION
SERVICES

MESSAGE
SERVICES

DB

START

NAME

PASSWORD

Y
E

S
Y

E
S

NEWS

GERM

ENGL

WEATHER

SPORTS

One of the most common types of states is the Menu state. This
state includes the following VIL commands: {STATE_INIT,
BARGEIN}. The BARGEIN command, discussed above,
requires a series of application (domain) specific arguments. For
example, the ACTIONS command requires a set of optional
actions to be taken (if desired by the developer). The application
developer also needs to provide the state name for
STATE_INIT, as well as the status of some flags and the
grammar name for the AUDIO_CTL command. STATE_INIT
is a low level VIL command providing the Application Manager
task of logging the state name and pushing the state name onto a
stack (thus providing a history of states accessed by the user).

4.2. VUI Demo- VIL Implementation

The VUI demo is a good example of how some of the more
commonly used VIL commands are implemented in a typical
application. A typical application requires a START state that
opens all required speech and telephony servers, a security or
identification state, and then a Main menu state that is the top of
the Dialogue tree structure. From Figure 2, one can follow the
flow of the VUI demo from the START state to the
MENU_MAIN state. The caller is then directed, from the Main
Menu, to any of several services (Calling, Information, and
Messaging) as shown. The traced flow of states (in an
abbreviated form) is below.

START:{
$StateName = "START";
STATE_INIT;
START;
$tts_out = "Hello. I am your network assistant.\
 You may ask for Help at any time.";
AUDIO_CTL;

}

ENTRY_NAME:{
$StateName = "ENTRY_NAME";
$tts_out = "What is your name, please?\n";
$GrammarStem = "Names";
@TagArray = "name";
@Action_BI = ("amTagData");
STATE_INIT;
BARGEIN;

}

ENTRY_PASSWORD:{
$StateName = "ENTRY_PASSWORD";
STATE_INIT;
PASSWORD;

}

MENU_MAIN:{
$StateName = " MENU_MAIN ";
%RetArray = (
 "BYE" => "BYE",
 ….,
);
@Input = (set of possible speaker inputs);

@NextState = (set of possible states to switch to);
$GrammarStem = "Main";
$tts_out = "Main Menu. Which service do you want?";
STATE_INIT;
BARGEIN;
goto $NextState;

}

Each of the above states consists of a set of domain independent
VIL commands, such as STATE_INIT and START, preceded by
a set of domain specific arguments such as $StateName and
$tts_out. The START state contains the VIL commands,
{STATE_INIT, START, AUDIO_CTL}. These are useable for
any application, with a table of arguments that tailor the actions
to a specific state in a specific application, which can be as
diverse as banking transactions, weather reports from the
Internet, or voice dialing.

START is basically a macro consisting of a large number of
server-specific “primitive” commands that open connections to
various servers (ASR, Proxy, Telephony) in the Client API layer
(see Figure 1).

5. CONCLUSIONS

By developing a general purpose speech technology integration
platform to ‘glue’ many advanced speech technology
components from Bell-Labs research and from others, we can
easily prototype speech user interface and multi-modal user
interface applications. A script language support for speech user
interface and speech dialogue control makes it more convenient
to study human-machine speech dialogue interface in real world
conditions. This effort is continuing in the following directions:
standardize the API for spoken dialogue applications, support
object-oriented technology, extend it to other popular script
languages, develop a standard API/SPI for speech technology
components, and add more speech technology components for
natural language dialogue and understanding.

6. REFERENCES

1. Q. Zhou, C.-H. Lee, W. Chou, A. Pargellis; "Speech
Technology Integration and Research Platform: A
System Study"; 5th European Conference on Speech
Communication and Technology, TMC.2, Rhodes,
Greece; 22-25 Sept 1997

2. Q. Zhou, A. Saad, C.-H. Lee, "An Open System
Architecture for Speech Interfaced Applications on
Internet and Public Telephone Network", (unpublished)

3. C. Garcia-Mateo, Q. Zhou, C. H. Lee, A. Pargellis, "An
Overview of a Voice User Interface Demonstration
System for Mexican Spanish", ICSLP’98 (this
conference)

4. Web site for NIS summit meeting, 12-13 March 1998:
http://www.bell-labs.com/project/ConC

