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ABSTRACT dependent variability via front-end signal processing
[1][2][3][4]. These frequency warping methods linearly or

This paper presents a Bayesian constrained frequency Warpiﬁgnlinearly re-scale the frequency axis to reduce the variations
technique. The Bayesian approach provides for inclusion dietween formant frequencies. ~ A maximum likelihood
the prior information of the frequency warping parameter angStimation is used to find the optimal warping parameters
for adjusting the search range in order to obtain the bedfhich maximise the likelihood between a set of reference
warping factor dependent on HMMs. We introduce novefptatistical rr_lode_ls and the input utterances. S|nce_th_e warping
frequency warping (FWP) HMMs which are different Warpedt_ransformanon is employed in the front-end stage, it is hard to
versions of HMMs. Instead of frequency warping of the inpufind @ closed-form solution for the ML criteria. Therefore, a
speech we warp the spectrum of the HMMs. This is equivalerﬂ”d search is used to exhaustively search the optimal warping
to HMMs which have both time and frequency warpingParameters overan extended space of utterances.
capabilities. Experimentally FWP HMMs outperform the ) ) ) .
conventional constrained frequency warping approachh this paper, a Bayesian constrained frequency warping
Furthermore, the best warping factor is estimated in tw(gnethoo_l |s_presented where th_e_prlor information of the warping
stages, a coarse stage followed by a fine stage. This methiggtor is incorporated to efficiently search for the optimal

efficiently gauges the optimal warping factor and normalisedactor. ~ Firstly, a by-product of the iterative normalisation
the FWP HMMs. procedure in training is a set of probability models for the

distribution of the frequency warping parameters for each
HMM. These probability models are then employed for a
1. INTRODUCTION cI?;tyae5|an speaker normalisation of the training and the test

A major source of inter-speaker variability in hidden Markov, o cacond approach to Bayesian frequency warping, instead of
model (HMM) based recognition is due to the variations O{N

i arping the input speech, frequency warping (FWP) HMMs
shape and Ienth QT the vocal t.ract among d|.fferent speakerg.q employed to model the vocal tract variations. FWP HMMs
Vocal tract variability results in a broadening of speaker .o 5 get of extended HMMs where each HMM is associated
independent HMM probability models and a mismatchyis 5 range of warping parameters and are estimated by
between the distributions of the training utterances and teghyimising the likelihood of the extended observations. The
data. The effect of vocal tract length variation is a shift in thgyoq; warping factors for the input speech can be obtained by

spectrum of the speech. In [2] two simple vocal tract mocje'§earching FWP HMMs over all utterances. It is equivalent to
are considered, the uniform tube and the Helmholtz res,onatq[r,v”vlS which have both time and frequency warping

In the uniform tube the formant frequencies of utterances for Bapabilities.
given sound are inversely proportional to the length of the

vocal tract. ~The scaling of the formant frequency in the-thermore, the two methods above are combined in a two-
uniform mo_del is_consistent with linear frequency Warp'ng'step iterative procedure to implement the Bayesian constrained
Howev_er, n the - Helmholtz resonator model, a goo requency warping. In this procedure the most likely range for
approxm_atlon f_or the closed _front vowel, the formantthe warping parameters is firstly estimated by searching FWP
frequencies are inversely proportional to the square root of they,us. Then, the optimal warping factor is estimated within

vocal tract length. Furthermore, t_h_e_higher frequ_en_cy regionﬁ]e optimised constrained range. Therefore, both the efficiency
for these vowels show more sensitivity to the variation of the;s he HMM search and the precise warping of the

vocal tract length. Therefore, the scaling of the frequency axigy,senyations are encapsulated in the novel approach.
imposed by a change in vocal tract length is dependent on the

configuration _Of the vocal tract (the phoneme) and also thﬁ1 Section 2 the maximum likelihood based frequency warping
frequency regions. is described. Section 3 proposes Bayesian constrained FWP

. I HMMs. In Section 4 a novel efficient frequency warpin
Recently, several maximum likelihood based frequenc q y ping

i echnique is presented. Section 5 presents some experimental
warping procedures have been proposed to reduce the spe ults. Section 6 concludes this paper.



2. ML BASED FREQUENCY WARPING

The goal of the training procedure is to reduce the inter-

The maximum likelihood based frequency warping [2][3][4] is SPeaker variability by warping the frequency scale of the
a vocal tract normalisation approach using HMM based speedfiterances. A set of narrower distributions is obtained by
recognition. The advantage is that it is easy to incorporate thf§training the normalised utterances. During recognition, the
frequency warping method into an automatic speecl?pt'mal warping factor estimated by the same MLE procedure

recognition system.

is used to remove the mismatch between the normalised
HMMs and the test utterances. The training and testing

During both training and recognition, the optimal linearProcedures are described as follows.

frequency warping factor is estimated by maximising the

likelihood of the utterances with respect to a set of giver] 'aining procedure:

HMMs. Suppose thaD; denotes a set of utterances spoken by
speakeri, S denotes the corresponding state sequence

The MLE is used to estimate the best warping

transcriptions for the utterances, amtl fenotes a set of
HMMs. The optimal warping factorg , is estimated from a

set ofN discrete values within a constrained range and defined

as

d =arg ma>P(q|a,A , $) (1)

parameters.

2. All training utterances, warped by the optimal
warping factor, are then used as the retraining
database.

3. The retrained models are called normalised
models.

4. This procedure is iteratively executed until a
certain convergence condition is achieved.

Since finding a closed-form solution for Equation 1 is aTesting procedure:

nontrivial exercise, a grid search procedure is used.
procedure is shown in Figure 1 and is described as follows:

1. For an utteranc®;, given a set of HMMs,A],
the ML state sequence transcriptio8, is
obtained using the Viterbi search.

2. N sets of warped utterances are obtained by
warping the utterance(;, using a set ofN
discrete warping factorsy to a,.

3. Each set of warped utterances from Step 2 is
aligned with the corresponding state sequence
transcription, S, from Step 1 while the joint
probability of all frame vectors is obtained from
the pdfs of the mixture states.

4. The best warping factor is the one which
maximises the likelihood of the corresponding
set of warped utterances.

-
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Figure 1: The grid search procedure

The

1. The MLE is used to estimate the best warping
parameters.

2. All test utterances warped by the corresponding
optimal warping factors are then recognised
against the normalised models.

3. BAYESIAN CONSTRAINED FWP

The development of the Bayesian constrained frequency
warping method can be described in three stages. Firstly, the
prior information of the warping factor is investigated.
Secondly, a more representative statistical model and efficient
search of the warping factor is presented. Thirdly, we combine
the two methods mentioned above to obtain a more optimal
solution.

3.1. Constrained Bayesian Methods

In this section we propose several constraints and prior
information of the warping factor for developing constrained

Bayesian approaches.  The conventional ML frequency
warping method iteratively uses the exhaustive search to
estimate the optimal warping factor. However, some useful
information about the warping factor is ignored. In order to

make the search more optimal, we try to incorporate the prior
pdf of the warping factor for each HMM. Thus, the maximum

a posteriori estimation for the warping factor is obtained by
solving

d=arg ma><P(o|a,X ) P(a|)f ) (2)

where the distribution of the warping parameter is incorporated
into Equation 1 as a priori information.



The simplest case is the ML based frequency warping. In the
grid search the vocal tract variation which is within 25% is
used as the prior knowledge to constrain the warping factor. In
this case the prior is an uniform pdf within the grid search
range. However, in a gender-unbalanced training database,
such as TIMIT, the mean of the warping factors is biased so
that it is inappropriate to use a fixed search range. By
incorporating prior knowledge of the warping factor, the search
range becomes adaptive. Besides, since the distribution of the
warping factor is not uniform, the step size can be made
adjustable using the prior probability distribution.

Based on the parametric model of the vocal tract [1], the
warping factor is a linearly scaling factor between the change
of the vocal tract length/shape and the variation of the formant
frequencies. Under this condition the warping factor becomes

phoneme dependent. To take advantage of the characteristics 7.

of the distribution of the warping factor for each phoneme, the

The segmental labels obtained from Step 2 are
applied to all the corresponding warped
utterances.

The optimal warping factor for each phone
segment is estimated by maximising the
likelihood of the observation sequence, given Sl
HMMs or FWP HMMs.

Each phone in the extended training utterance is
re-labeled by a new name which is the original
name attached with the estimated warping factor
of the segment from Step 4.

Using the Baum-Welch algorithm, FWP HMMs
are estimated by maximising the extended
training utterances. For each phone model of
the initial S| HMMs a set of warped models are
obtained.

The further training iteration can be used to
optimise the FWP HMMs.

distribution is incorporated as the prior pdf. Although there is

a certain amount of information associated with the3 3 A Novel Warping Factor Estimation
distribution of the warping factor and an improvement is

attained, a more informative model of the warping factor is St”lb\ccording to the experimental results of the ML based
needed. frequency warping, the supervised frequency warping is better
than the unsupervised case particularly when warping in the
subword segment. In supervised normalisation the phone
transcriptions are employed during the estimation of the state
FWP HMMs are proposed and incorporated to model theequence. However, as we warp utterances frame by frame in
warping factors. FWP HMMs are a set of extended HMMsthe supervised case, the recognition rate increases slightly but
[AAa' ]. Given a set of reference HMMsA{ ], FWP HMMs the accuracy is degraded. It seems that an improvement can be

are estimated by maximising the likelihood of the extende&mh'e\/eoI _'f we use soft segmentation instead of hard
) A segmentation in frequency warping training. Therefore, before
observation sequence;", as

searching for the optimal warping factor, we incorporate the
FWP HMMs search to estimate a coarse factor.

3.2. Frequency Warping HMMs

A% = arg maxP%)A‘)\“'% (3)
A
. , S| HMMs Utterances
where A denotes the whole discrete set of warping factors. as initial =
Thus, the optimal warping factors for input utterances can be l
estimated by
R J{/iterbi N sets of relabeled
a' =arg ma>P(o|AO") (4) extended utterances
o Decoder[—" warped by
corresponding
where the Forward-Backward algorithm or Viterbi decoder can EM factors,ay,... 0.
be used. Algorithm  [¢—]
A training procedure for Equation 3 is developed in which l
FWP HMMs are obtained by using all training utterances and™ g\yp FWP HMMs search
their extended versions. The extended utterances arp
- . . HMMs
generated by warping the training utterances using the set ¢f l
warping factors. The procedure is described as follows:

The grid search =

1. To generate the extended training utterances, the
frequency scale of all training utterances is
warped by a discrete range of warping factor.

2. The state sequences of the unwarped utterances
are obtained by forced-alignment where a set of
HMMs is given. The set of HMMs can be SI
HMMs at the beginning or FWP HMMs during
the training iterations.

Figure 2: The warping factor estimation algorithm

The iterative procedure for the novel warping factor estimation
is shown in Figure 2 and described as follows. We define a



coarse warping factora, , and a fine warping factora; . Table 2: Normalisation in 1-iteration training and
recognition with 1 Gaussian per state
SPWF SEWF PHWF STWF
S 58.53% | 59.77%| 61.97% 62.52%
U 58.49% | 58.56%| 59.48%| 58.90%

The optimal warping factorg , is obtained by adding the two
factors together as in Equation 5. The optimal coarse warpin
factor, d, , defined as Equation 6, is estimated by maximising
the likelihood of the observation sequencg, given FWP
HMMs, A% . The optimal fine warping factord;, is  In Table 3 the 8 Gaussian multi-mixture HMMs contribute

estimated by maximising the likelihood of the observatiorsignificant improvement when the normalisation procedure is
incorporated into recognition (R) and also the HMM training.

sequence, Xo'f, given estimated FWP HMMs,Aﬁr, as

Equation 7. Table 3: Normalisation with 8 Gaussian pdr
o state andPHWFs
a=ay +ay ©) BASE R T+R
0, 0, (V)
d, =arg maxP( Xl)‘a, ’ar) 6) S 69.33% 69.41% 71.14%

a,

Table 4 shows that the HMMs obtained from supervised

~ _ af

as =arg maxP%X
ag

P O % (7) training are inappropriate to the unsupervised recognition.

Table 4: S/U Training + S/U Recognition
During training, the optimal warping factor is estimated using u+u S+S S+U

the new warping factor estimation procedure. During testing, PHWF 59.48% 61.97%| 58.79%
the normalised FWP HMMs can be employed to recognise the

test utterances without predetermining the warping factors fopvhen we apply the FWP HMMs to the normalisation, the

the utterances. recognition rate is 60.97%. It shows that, compared to the
S+U normalisation using ML frequency warping, FWP HMM
4. EXPERIMENTS search contributes a significant performance.
To study various characteristics of the warping factor, we 5. CONCLUSION

investigate the frequency warping of different segments.

Generally speaking, when the warping factor varies across the Bayesian constrained frequency warping approach
smaller segment, the normalisation contributes a bettefontributes significant improvements both in efficiency and
performance. recognition. FWP HMMs have been successfully employed in
the estimation of the frequency warping factor and have
Experiments were based on the TIMIT speech database usifiiproved S+U normalisation by 2%. Also during recognition
monophone HMMs. The speech features consisted of 1fe search for the phoneme sequence and warping factor can be
MFCCs supplemented with the 1st and 2nd differentials. Thgone simultaneously without warping the input speech. In
constraint of linear frequency warping factor is from 0.88 toaddition, the novel warping factor estimation procedure will be
1.12 with steps of 0.02. With a single Gaussian per state thgsed to efficiently and precisely to estimate the optimal

baseline recognition rate is 58.10%. Table 1 and 2 compaigarping parameters and the normalised FWP HMMs.
recognition results with respect to different warping segments.

These are the observations from each speaker (SPWF), each

sentence (SEWF), each phone segment (PHWF) and each state 6. REFERENCES
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