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ABSTRACT 2. THE DIALOG SYSTEM EVAR

In this paper we present an innovative approach to speech undé&s a framework for our approach we use the dialog system
standing which is based on a fine—grained knowledge representavaArR  [4] which answers queries about the German train
tion automatically compiled from a semantic network and on itertimetable. The linguistic knowledge representation gAE is

ative optimization. Besides allowing an efficient exploitation ofarranged in Sevels of abstraction The Word—hypothesekevel
parallelism, any—time capability is provided since after each iterepresents the interface between speech recognition and speech
ation step a (sub—)optimal solution is always available. We applynderstanding; orSyntaxlevel syntactic constituents are rep-
this approach to a real-world task, which is a dialog system abtesented; theSemanticlevel is used to model verb and noun
to answer queries about the German train timetable. In order foames with their deep cases for task independent interpretation;
speed up the search for the best interpretation of an utterance wePragmaticlevel, semantic information is interpreted in a task—
make use of statistical methods, e.g. neural netwarkgrams, specific context; th®ialog level models possible sequences of
and classification trees, which are trained on application relevadtalog acts. Figure 1 shows an excerpt of the semantic network
utterances collected over the public telephone network. At theepresenting linguistic knowledge about the destination of a trip.
moment the real-time factor for interpreting the initial user’s ut-

terance is 0.7. P_DESTINATION
1. INTRODUCTION m o e gma dality 1
_ . S.GOAL S.LOCATION mi Y3
In order to make use of automatic speech understanding systems D e . ma! y
in real-world applications, those systems have to be featured with ma s BT m1 1m2 o
. X | TR .. : - — = opt. part
real-time and any-time capabilities. Furthermore, they should sy PP e e - — = obl. part
. . . . ‘e 2 . .
be easily adaptable to new application domains, and should be \ P e ~ concrete
able to integrate speech with other sources of information, for SQ_ NP
instance gestures, which would increase the accuracy and natu- / ~s-1-2
ralness of human computer interaction. The combination of sta- ml/m2 S = - oM
tistical methods with knowledge based methods and parallel pr&§Y-PREP SY-NPR SY-NOUN SY.ART SY-ADJ

cessing seems to be a promising means to achieve some of the .. B e
capabilities mentioned above. e h e el

Whereas the use of statistics on the level of speech recognition is
state—of-the art, speech understanding is usually based on pars-
ing algorithms and context—free grammars. In the past few years,

statistical methods were gaining more and more importance als% . . . .
on the level of understanding (see for instance [1, 2]). A vari] ne knowledge itself is represented using the semantic network

Figure 1: Excerpt of the knowledge base of EvAR.

ety of parallel algorithms for problems from data—driven procesgormalism of ERNEST (ERIlanger NEtzwerk SysTem) [5].

ing have been developed. In contrast, parallel symbolic proces§owledge about general terms, events, efc. is represented
ing is much less investigated, although some major problems 8t conceptsC (e.g. SY.NOUN represents knowledgebaut

the field, like e.g. parallel knowledge representation [3], are dig1ouns), actual realizations of a concept are representdd-by
cussed in the literature. In our approach, we combine knowledgi@nces (C) (€.9. the nouritrain” is represented by an instance
based speech understanding using semantic networks with stafisS Y -NOUN)). Relations between the concepts (nodes) are es-
tical methods to speed—up the search for the best interpretatidfPlished bypart— concretes-andspecialization—links

The semantic network provides an integrative knowledge repre-
sentation formalism for speech and image understanding. B . ;
using statistical methods, a fast adaptability to new applicatio andconcretesk, a set ofattributesA andstructural relations

domains is enabled, provided that a corpus of data is availablg: Each of them refere_nces a functighwhich computes the
Furthermore, a control algorithm based on parallel iterative Op\{alue .Of the correspondl_ng attr_lbute and a measure of the degree
! f fulfillment of the relation. Since there may be different pos-

timization is used, providing the desired any-time and real~timg' " S ;
behaviour P 9 4 Sibilities for the actual realizations of a concept and in order to

allow a compact knowledge representatiomdalitiesH; are in-

e main components of a conceptitself are, besides itsarts



troduced with the implication that each individual modaIH)V“) m current match attribute network = - - - - - - - -
may define the concefity. In Figure 1, for example, a Noun C Possible matches

Phrase (SYNP) can be defined by: o ___O(C_Mad_1 _ W
B . H T OC_Mnd A _ W
e Modality 1: obllq:altory Q’artProper Noun confidence mehsure C,Mod 3 S
(e.g.“Berlin” ) of the goal concept ?
e Modality 2: obligatory partNoun ! -

optional partsArticle, Adjective
(e.g.“the next train”) network

|

! :

!
. . . . encodin O O O(C,Mod. D)
For the computation of an instanééC’), instances for all of its e :
parts and concretes, and values for all of its attributes and rela- : é 6‘
tions have to be computed. Due to word recognition errors and |
ambiguities in the knowledge base (arising, for example, from the, ... -

. . ) ! . . initial attributes

various modalities), aonfidence measui& is available, which c N S (N

computes the degree of confidence ¢€') and its expected con- 2 Ich
tribution to the success of the analysis. The ultimate goal of thg £  will
. . & um
analysis itself is represented by one or mgoal concepts’y, , 22 acht
which represent the required overall symbolic description of the© nach

initial segmentation. Subsequently, an interpretation of the injv ~ Berlin
tial word—hypotheses is given by an instance of a goal concept
I(Cy;). Task of the control-algorithm is thus to search foopa
timal instancel * (Cy,) with highest confidence value. (since in
our application domain we have only one goal concept, we wi
refer only toCy, in the rest of the text).

Figure 2: Scheme of the parallel iterative control algorithm.

raph, the so—calleattribute network(cf. Figure 2). This is done
y splitting up each concept to be considered for the computation

of an instancel (C,) into its subconceptuaéntities (attributes,
relations, and confidence measures) and by determining the de-
3. THEITERATIVE CONTROL pendencies between them. For the computation of an instance
H (Cy), a state of analysis is chosen, mapped onto the attribute
for an optimal interpretation as eombinatorial optimization netyvork, and all nodes of the_ attribute network are proqesseq In
problem and solves it by means itérative optimization meth- 2 Single bottom-up step. This step corresponds to a single iter-

ation in the iterative optimization. The attribute network can be

ods, e.g. simulated annealing, stochastic relaxation, and . )
gﬁuapped to a multiprocessor system for parallel procespamgi-

netic algorithms. Since in principle each word—hypothesis ¢ . o TN
be “attached” to each primitive attribute of a concept on word—el bottom—up instantiation Furthermore, several competing in-

hypotheses level (cf. Section 2), and since an instd€§ can stances of goal concepts (i.e., sevdia(Cy) for differentr;’s)
be computed for each modality 6f, one can say that the com- can be computed in parallepaﬁralle_l search), e.g. on a 'OC?" net-
putation ofI(Cy,) and its confidence value are completely deter-\év)ork of heterogeneous workstations (WS.., WS in Figure
mined by )

The control algorithm we employ (cf. [6]) treats the searc

e the choice (41',0](.“),1' =1,...,m of a word-hypothesis Figure 2 shows an example for the analysis of the word—chain
O; for each primitive attributed; of concepts representing “Ich will um acht nach Berlih (*1 want to go to Berlin at
the interface to the initial segmentation and eight o’clock, in a word to word translation “| want at eight to

e the choice Ck,H,(k)),k —1,... n of a modality H, for Berlin”). The current state of analysis for which an instance is

each instance of a conceft which has more than one computed bottom-up on Wss
modality. Tews, = [(An,will), ..., (A4, Berlin), ..., (Am,um);

This allows us to characterizecarrent state of analysisy way (C1,Mod.1),..., (Cr,Mod.3)] ,

of the following vector: with C., being the goal concei,. The current state of analysis

_ )y, (R)y | — b — on WS differs from that on W$ at least by the current
re =4 077 (G, H) i = Loeoom s k=1, word—hypothesis assigned #,, (“nach”); the current state of
and to computé (C,) subject tar.. Each value assignment to the analysis on W§ differs from that on Wg and WS at least
parameters of this vector reflects exactly one out of the finite séy the Modality assigned to the goal concept, indicating that
of possible interpretations. The task of the control algorithm canompeting instances are computed for different states of analysis
thus be defined as to find an optimal state of analy$isvhich ~ on the various workstations.
consequently reflects an optimal instaric¢C,). Therefore, a
cost functiong is introduced anek. is treated as the current state 4. STATISTICAL INITIALIZATION
of a combinatorial optimization problem. In each iteration step
an actual state; is chosen out of;_; and an instancé,, (C,)  If an initial state of analysig, is chosen at random, it often oc-
and its corresponding cosfs; are computed for;. Iterations curs that the algorithm starts searching quite far from the optimal
are performed until an optimal solution is found or until no moresolution and thus needs a lot of iterations (and hence a great deal
processing time is available. The determination of how to caresf processing time) until the optimum is found. Thus, in order
fully choose arinitial stater is topic of Section 4. The iterative to find the best interpretation in an efficient manner, the careful
strategy provides the system wahy—timecapability, since after choice of an initial state of analysis is indispensable.
each iteration step a (sub—)optimal solution is always available.

For example, if a Noun Phrase for the wordbée' next trairi

An efficient exploitation ofparallelismis enabled by compiling is to be instantiated, and modality 1 is chosen to compute the
the concept—centered semantic network into a fine—grained taskerrespondingl (SY_NP) (cf. Section 2), the confidence value



of this instance will be quite low or “invalid”. So, the basic 4.2. Initialization by n-grams and Classifica-
idea is to make a prediction of the optimal state of analysis tion Trees

by means of the given word—chaie (which can be the best

word—chain computed from the word—graph). This would lea®ther approaches to the classification problem formalized in
to the prediction of modality 2 for computing the demandeckquation (1) where we try to find a corresponding class for a
instance in the above example. The initialization problem IS thl@poken (Or recognized) word chait are semantic classification

viewed as a classification problem trees (SCTs) [9] ana-gram language models [10]. As the num-
w i Q- Q) Qs QH("))T — ro (1) ber of nodes to be initialized is very high and it is not feasible
i j 1 L to train a classifier based on SCTsmegrams for each node, we

which we solve by means of neural networksgrams, and clas- reduce the task for SCTs andgrams to some very important
sification trees. Since the number of classes for each Attributeodes in the attribute network. In our experiments we concen-
A; varies for eachw to be analyzed (according to the numbertrate on the initialization of the verb frame which gives us ten
of concurring hypotheses for eaeh), we will only consider the different classes. We use a system with 71 disjoint categories
initialization concerning the assignment of a modaH)VC) for  which comprise syntactic, semantic and pragmatic information.
each ambiguou€’s, k = 1,...,n (in our applicationn = 223; . o

eachC}, has an average of 2.4 concurring modalities). For moré/hen using SCTs we have to specify in advance the set of pos-

details cf. [7]. sible questions which mainly check the appearance of words at
special positions in the word chain. In addition we have to define
4.1. Initialization by TDNNSs a criterion to be optimized during training iterations. We decided

for the Gini criterion (cf. [9]) to scale the impurity of sets gen-

In order to represent the temporal information contained ime ~ €rated by the tree. As output we get the number of the class the
make use of Time Delay Neural Networks (TDNNSs) [8] whichinput word chain is classified on, i.e. the verb frame we have to
are Artificial Neural Networks with multipléme delaylinks be- ~ choose for our initial state of analysis vector.

tween successive layers. This allows us, furthermore, to process L . .
word—chains of any length. or the classification of word chains withgram language mod-

els we suggest the following framework: For each class to be dis-

A widely used approach if working with statistical methods andinguished we train a separategram on those sentences from
large vocabularies is to cluster the words into categories. For e{1€ training set corresponding to the according class. In the case
ample, in order to classifydt DIGIT o'clock’ as being a time ex- of classifying verb frames we train ten different language _mod-
pression, it is not important if BT is an “eight” or “ten”. Since €S- FOr a new sentence to be analyzed we compute the different
not only syntactic information is important for our application,Probability scores of the models and decide for that with highest
but also semantic information, we use a method for categorizatidifoPapility.

which allows to represent several features of a single word in one

category. Therefore, we define the category itself as consisting of 5. EXPERIMENTAL RESULTS

abasic partand aspecial part The basic part contains syntactic ] ) o - o
information about the word, the special part semantic informatiol this section we show the classification ability of the statisti-
(it may also consist of more special syntactic information, if necéal methods and we evaluate the performance of the system em-
essary). Consider, for example, the word “Intercity”. It's basid®owered through statistics in comparison to the system without
category is MUN, it's special category is fAIN. The resulting statl_stlcs. The latter was done w_lth re_spect to the amount of _|t-
category system is not disjoint. With some slight modifications ierations necessary to find an optimal interpretation. The quality

is also used for the other methods (cf. Section 4.2). of an interpretation is measured according to the amount of prag-
matic information units found. These are units the system needs

Each category is represented as a binary vegtarhich serves to know in order to access the database and retrieve the requested
asinput for the TDNN. Each binary vector consists, accordinginformation.
to the categories, of a binary part representing the basis, and a

binary part representing the special information: For our experiments we use the transliteration of 6 gpi@nta-
neousutterances selected from tB&/AR—Spontan (cf. [11])
w; > ‘basis| special‘ — ‘(000 10...00 100...0)‘ corpus (simulating a 100% word—accuracy). These sponta-
categorye input vectors neous utterances were collected via the public telephone network.

if duws i f . Il that th Training is done with 5767 of these utterances, for the tests we
a word w; is part of two or more categories (recall that the, qe the remaining 945 ones. The labeling of the test data for the
category system is not disjoint), the appropriate input vector rgg,ining of the TDNN was done automatically by the system it-
sults from a combination of the binary representation of thesggy¢ 'ing a heuristic initialization which consists of a small set
categories. The structure of the input vectors is chosen in su rules working on the incoming word—chain. These rules were

a way that the combination results in a unique representation g veloped on a corpus of about 1#®ught upsentences of the
the categories. Theutputo of the TDNN is also a binary vector ¢, e domain. One of these rules, for example, asks whether the

which is mapped to the initial state of analysis veater For qqs4tq go” appear in the word—chain and if so, the verb frame
example, assuming that the concéfithas 3.C; has 4, and 5 g is adjusted. By this heuristic initialization, we improve (on
has 3 competing modalities, the output vector will be the 140 read sentences) the analysis in the first iteration step from
o=(04,...,0;...,0,)=(0,1,0,...,0,1,0,0,...,0,0,1) 56% to 89% correctly analyzed pragmatic intentions. Per sen-
—~ — ~~——  tence we performed 25 iterations (because of time limitation; we
) . . ) €1 ¢ On plan to carry out a more accurate labeling by performing more
if modality 2 is assigned t6", andC;, and modality 3is assigned jterations) and each sentence was, thus, labeled with a state of
to C'». The number of output nodes of the TDNN results from theynalysis vector which reflects the interpretation after these 25 it-

sum of the amount of competing modalities for each ambiguougrations. The task of the TDNN is to learn this state of analysis
concept (which, in our application, is a total of 542 nodes).



and to predict it for each new word—chain to be analyzed, so wie verb frame initialization by the SCT can intercept errors made

can save computing time (the time to perform 25 iterations) withby the TDNN, and thus lead to an overall better result.

out loosing accuracy. For the training of the SCT andram,

whose task is only to adjust the verb frame (cf. Section 4.2), theg. CONCLUSION AND FUTURE WORK

labeling with verb frames was done semi—automatically: a small

set of rules classified the word—chain in a first step and in a secondlthis paper we proposed the employment of statistical methods

step we checked and corrected the results. to initialize the state of analysis of a knowledge based speech un-
derstanding and dialog system with any—time and real-time capa-

The trained TDNN consists of 42 input nodes (we enter tw@jlities. Experimental results showed the success of the approach.

words a time) and 542 output nodes (cf. Section 4.1). Thengleanwhile we have improved heuristic rules through which the

are five hidden layers, each consisting of 70 nodes. The netwoggstem can achieve significant better results than those in Table

thus is able to consider a context of 16 words.

[ SCT | n-gram] TDNN |
[97.9% ] 92.2% | 98.2% |

Table 1: Prediction results for the verb frame with SCT amd
gram and for the state of analysis after 25 iterations with TDNN.

In Table 1 the percentage of correctly classified verb frames us-1 '
ing the SCT and:-gram and the percentage of correctly classi-
fied modalities for the 223 ambiguous concepts using the TDNN
(with respect to the state of analysis after 25 iterations as ex-
plained above) are listed. As one can see, the SCT and-the
gram are able to predict the verb frame to be adjusted for a given
word—chain and the TDNN is a very good oracle for the predic-
tion of the state of analysis resulting after 25 iterations. The
attribute network for the evaluation of the overall system’s im-
provement consists of about 10 000 nodes. The goal concept i8
P_CONNECTIONINFO which models the user’s first utter-
ance in a dialog for train timetable information. The optimiza-
tion method used istochastic relaxationin Table 2 the number 4,
of correctly analyzed pragmatic units (i.e. the number of prag-
matic units found) by computing iterations on five processors

is shown. It should be noted that the bottom—up processing is
done sequentially, and the parallel processing on control level (cf.
Section 3) is simulated on a single processor. We are at the mog_
ment working on the implementation of the parallel processing
on several workstations.

| [ spoken word chain|

# of Iterations 1 5 25 6
Heuristic 78.8| 79.0| 79.7
TDNN 80.7| 82.3 | 82.6
TDNN + n-gram || 79.5| 80.8 | 80.8 7
TDNN + SCT 815 83.1| 83.3

Table 2: Percentage of correctly analyzed pragmatic units.

The starting point for the statistically initialized analysis is a state
which conforms to the heuristically initialized analysis after 25 8.
iterations. It can be seen that the more iterations performed, the
more information is found and accuracy increases. Additionally,
since the computing time for the statistical initializatioa 0.4 0.
seconds) is about the same as for performing two iterations (one
iteration needsz 0.2 seconds on a 9000/735 HP—Workstation),
we drastically accelerate the analysis. At the moment, the sy
tem’s real-time factor for the interpretation of the initial user’'s
utterance is 0.7, performing 5 iterations on 5 processors (the av-
erage time per utterance in our corpus is 3 seconds). We achieve
the best result by employing the TDNN for the initialization of the
modalities combined with a verb frame initialization computed
by the SCT. This can be explained by the fact that verb frames
in German often are defined by key—words which can have long
distance dependencies between them. These can be modeled wit|
the SCT but not with thea-gram (cf. also Table 1). Furthermore,

. F. Deinzer.

11. W. Eckert,

2. The experiments with statistical initialization will be rerun us-
ing these new heuristics. Furthermore, we will concentrate on
the processing of word hypotheses graphs, and on the further im-
provement of processing time and convergence speed.
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