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ABSTRACT

Recovering vocal tract shapes from the speech signal is

a well known inversion problem of transformation from

the articulatory system to speech acoustics. Most of the
studies on this problem in the past have been focused

on vowels. There have not been general methods e�ec-

tive for recovering the vocal tract shapes from the speech
signal for all classes of speech sounds. In this paper we

describe our attempt towards speech inverse mapping by

using the mel-frequency cepstrum coe�cients to represent
the acoustic parameters of the speech signal. An inver-

sion method is developed based on Kalman �ltering and

a dynamic-system model describing the articulatory mo-
tion. This method uses an articulatory-acoustic codebook

derived from Maeda's articulatory model.

1. INTRODUCTION

Estimation of articulatory positions and movements from
speech acoustics is commonly called inverse mapping in

speech research, as it is an inverse of the natural transfor-

mation from articulators to speech acoustics. The main
di�culties of the acoustic-to-articulatory mapping are due

to the nonlinear and one-to-many characteristics of this in-

verse transformation. Some of the approaches to speech in-
version have used an analytical nonlinear function for mod-

eling the articulatory-to-acoustic transformation, whereas

others used articulatory-acoustic codebooks derived from
articulatory models or measurements of articulatory and

acoustic parameters from human beings. There were many

attempts of estimating the vocal tract shapes from the for-
mant frequencies of the speech signal, but these parameters

are not representative for all classes of speech sounds. The

non-unique solution of the acoustic-to-articulatory map-
ping have motivated researchers to �nd optimal articula-

tory trajectories and vocal tract shapes by imposing dy-

namic constraints.

The inverse mapping in speech is a di�cult and unsolved
problem. Satisfactory solutions to this problem will have

both theoretical and practical signi�cance. It would help

the motor theory of speech production, the articulatory

phonology and have applications in speech and speaker

recognition, speech synthesis, speech coding and teaching

deaf people to speak.

Among the �rst researchers who approached this problem
were Mermelstein and Schroeder who proposed methods of

estimating the area function from formant frequencies [5].

Sondhi and Gopinath proposed a method of determina-

tion of vocal tract shape from impulse response at the lips

[12]. A new method using the inverse �ltering of the acous-
tic speech waveforms has been suggested by Wakita [14].

Shirai and Honda studied the estimation of articulatory

motion using an articulatory dynamical model and nonlin-
ear �ltering [11]. They have used a nonlinear observation

function relating the formant frequencies to articulatory

parameters.

A theoretical study of speech inversion has been done by
Atal et al. [1], using a computer sorting technique. They

studied the acoustic-to-articulatory relationship by sam-

pling the whole space of an articulatory model and creating
the articulatory sets of vectors called �bers which map into

the same acoustic vector. A study of estimation of artic-

ulatory trajectories using Kalman �ltering has been done
by Wilhelms et al. [15]. They used as acoustic features the

short time spectra and experimented the method on vowels

and some limited consonants. Schroeter et al., [9] proposed
a method of estimating the articulatory parameters using a

vocal tract/cord model and an articulatory-acoustic code-

book. In that study they have used the LPC parameters
as acoustic vectors and sampled the articulatory space be-

tween pairs of root shapes. This work has been extended

later to a multi-frame approach. More recently, Schroeter
and Sondhi [10] presented a method based on dynamic pro-

gramming to search the articulatory codebooks. They have

used the LPC derived cepstral coe�cients as acoustic fea-
ture and introduced a lifter in computation of the acoustic

distance and a dynamic cost in making a transition from

a vocal tract shape to another one. Papcun et al. [6]
further studied the inversion problem with a neural net-

work trained on X-ray microbeam data. An optimization

method based on conditional minimum e�orts has been
used by Sorokin [13] for determination of vocal tract shape

for vowels from formant frequencies.

Ramsay and Deng [7] proposed a stochastic target model

for estimating the articulatory parameters. They used
the EM algorithm for estimating model parameters and

Kalman smoothing to estimate the articulatory states. An-

other work using the dynamic programming search has

been presented by Richards et al. [8]. They attempted

to estimate the articulatory representation of speech using

the cepstral coe�cients and a codebook derived from the

Distinctive Regions Model. A method of recovering articu-

lator positions from acoustics based on human articulatory-

acoustic data has been published by Hogden et al. [4].

They have used a vector-quantization method to build dif-

ferent articulatory-acoustic codebooks.



Improving our earlier method for estimating articulatory

parameters from formant frequencies using the Iterated Ex-
tended Kalman �ltering technique [3], we in this paper de-

scribe our new experiments on recovering vocal tract shape

and its dynamics for vowels using the mel-frequency cep-
strum coe�cients (MFCC) as the acoustic measurement.

The main contribution of this paper is selection and cre-

ation of articulatory-acoustic data and the implementation
of �ltering and smoothing techniques.

2. ARTICULATORY MODEL

In order to use the Extended Kalman Filtering we lin-

earized the articulatory-to-acoustic function on small re-

gions using an articulatory-acoustic codebook. To create
this codebook we have used the Maeda's static articulatory

model built by statistical analysis of X-ray �lms of a French

female speaker. This articulatory model constructs the vo-
cal tract shape from eight linear components representing

the jaw, tongue body, tongue dorsum, tongue tip, lips and

hight of pharynx. From these parameters the vocal tract
area function is computed and a lossy vocal tract model

transforms the area function into the vocal tract transfer

function. We used an all-poles model of the vocal tract
transfer function.

3. ARTICULATORY AND

ACOUSTIC DATA

Our main idea for the acoustic-to-articulatory mapping

is to use low dimensional parameters whose components

are orthogonal to represent both articulatory and acoustic
vectors. In this work we have chosen the Maeda's artic-

ulatory parameters (which are orthogonal to each other

and explain most of the vocal tract data variance) and the
MFCC parameters (constructed from orthonormal func-

tions). The articulatory-acoustic nonlinear function h re-

lating the articulatory vectors x to the acoustic vectors y
is de�ned by the equation: y = h(x). This analytical func-

tion is of many-to-one type and practically has been proved

to be so by many articulatory compensation experiments.
For this reason we did not create, as in other studies, an

acoustic-articulatory codebook to search for each acous-

tic frame the closest acoustic entry in the codebook and
get the corresponding articulatory parameters describing

the recovered vocal tract shape. Instead, we created an

articulatory-acoustic codebook in which many possible en-
tries of articulatory parameters map into the same acoustic

vector. In this way we allow each acoustic frame to be pro-

duced by di�erent vocal tract shapes, as in natural speech
this occurs due to compensatory articulation. The selec-

tion of the optimal vocal tract shape from all candidate

shapes has been done introducing dynamic constraints by
the dynamical model.

The articulatory parameters used to construct the (x;y)

pairs of the codebook were the eight articulatory model

parameters, whereas for the acoustic parameters we used
the MFCCs. It is well known that the MFCCs are among

the best acoustic features used in automatic speech recog-

nition. The MFCCs are robust, contain much information

about the vocal tract con�guration regardless the source of

excitation, and can be used to represent all classes of speech
sounds. We devised a method of computing the MFCC pa-

rameters using a �lterbank from both speech signal and

vocal tract shape. This is because in our analysis-by-
synthesis procedure we have to minimize the acoustic dis-

tance between the measured speech spectra and the model

speech spectra. In both cases, from the all-poles LP mod-
els we computed the log energy spectrum and then applied

it to a �lterbank composed of critical band �lters. The

outputs of these �lters were used to compute the MFCCs
after multiplication with some orthonormal functions. We

used 10 low-order MFCCs, not including the zero-th order

that represents the log energy.

In our previous work, [3], we have created an articulatory-
acoustic codebook only from middle vowels, and the tran-

sitions to and from vowels were not accurately modeled. In

the current work, we constructed a separate articulatory-
acoustic codebook by randomly sampling the articulatory

space. The initial data points in the sampling represent 392

open vocal tract shapes selected from a total of 519 shapes
from which the Maeda's articulatory model has been built.

Subsequently, we created for each of the 392 original vocal

tract shapes many vocal tract shapes which map approxi-
mately into the same acoustic vector as the original shape

does. These simulated shapes can be very di�erent and

their corresponding vocal tract transfer functions are not
exactly the same. Hence a �ne covering of the acoustic

space of this codebook has been accomplished. The en-

tire articulatory-acoustic codebook we have created con-
tains a total of 235,000 pairs of articulatory and acoustic

vectors. The histograms of the 235,000 articulatory vec-
tors (8 dimensions) from the codebook are shown in Fig.

1. The corresponding histograms of the MFCC vectors

(10 dimensions) are shown in Fig. 2. This codebook is
used to characterize the nonlinear function h, which is lin-

earized on many small regions using a clustering algorithm

and a vector quantization (VQ) technique. The result of
the VQ-clustering gives a total of 10,000 piecewise-linear

regional models, which jointly approximate h. For train-

ing the model parameters and recovering the vocal tract
shapes we have used vowel tokens from TIMIT database

and articulatory-acoustic data recorded with an electro-

magnetic midsagittal articulograph (EMMA).

4. METHODS

For estimating the dynamical model parameters we imple-

mented the same method as in [2, 7]. We have used the

Expectation-Maximization (EM) algorithm for ML estima-

tion of model parameters. To model the dynamics of the

articulators we used second-order critically damped linear

models. These can be augmented to the �rst order state

equation:

xk+1 = Fxk +wk (1)

where F is the transition matrix and w is a white Gaussian

noise with covariance matrix Q. By expanding the nonlin-

ear function h(x) in a Taylor series about a reference �xk,
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Figure 1: Distribution of articulatory vectors
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Figure 2: Distribution of acoustic vectors

as in [11], we obtained the linearized output equation:

yk = h(�xk) +H(�xk)(xk � �xk) + vk (2)

whereH is the Jacobian matrix of h and v is a white Gaus-

sian noise with covariance matrix R. The two processes w
and v are supposed to be uncorrelated. For each linear

region a matrix H and a mean acoustic vector has been

computed. Because of the nonlinearity in the function h,
the conditional probability of articulatory states x given

the observations YN is not Gaussian and the EM algo-

rithm will only converge to an approximate ML estimate
of model parameters.

The EM algorithm iteratively estimates the parameters �

(including matrices F, Q and R) by maximizing the log-

likelihood objective function:

J(X;Y; �) = logfL(X;Y; �)g =

�
1

2

MX

m=1

Nm�1X

k=0

f(xk+1 � Fxk)
T
Q
�1(xk+1 �Fxk)g

�
1

2

MX

m=1

NmX

k=1

f[yk � h(xk)]
T
R
�1[yk � h(xk)]g

�
1

2

MX

m=1

NmX

k=1

flogjQj+ logjRjg+ constant (3)

The training we have used is based on multiple observa-

tion sequences. The number of sequences M is a function
of occurrences for each vowel in the training utterances,

whereas the number of frames Nm varies according to the

observation sequence m. In maximizing the objective func-
tion, we have used di�erent expectations of the states given

the observation sequences. These expectations have been

computed using the Kalman �ltering and smoothing.

The recovery of vocal tract shapes is based on estimating
the articulatory states for each frame of the test data. After

training the model parameters we have used the Iterated

Extended Kalman �ltering and smoothing techniques for
estimating the articulatory states.

5. EXPERIMENTAL RESULTS

We performed some preliminary experiments of estimating

the model parameters and the vocal tract shapes for 10 En-

glish vowels (/aa/, /ae/, /ah/, /ao/, /eh/, /ey/, /ih/, /iy/,
/uh/ and /uw/) from the utterances of a female speaker

from TIMIT database. The vowel tokens have been di-

vided into the training and test sets. The selection of the
speaker was based on data �tting with the Maeda's model

female speaker in the two-dimensional space formed by the

frequencies of the F1 and F2 formants. The EM algorithm
for estimation of model parameters has been used for 10 it-

erations, with the algorithm convergence consistently being

observed. The MFCCs have been computed for frames of
32 ms, with 10 ms frame shift, after preemphasis and Ham-

ming windowing. We trained the models from these short

vowel tokens without taking into account the preceding
sounds for each of them. Because of that, we added before

each observation sequence a simulated starting sequence.

These starting sequences were built by linear interpolation
between the corresponding MFCCs of the mean articula-

tory vector of the codebook and those of the �rst frame for

each of the observation sequences. The mean articulatory
vector of the codebook was close to zero, hence the tran-

sition of the articulatory parameters from this initial state

to the �rst state of each observation sequence was smooth.

In Fig. 3 we show an example of recovering the vocal tract
shapes from MFCCs of a TIMIT vowel /aa/. From the

16 MFCC frames of the /aa/ token we estimated the tra-

jectories of the 8 articulatory parameters. From these pa-
rameters we recovered the vocal tract area functions and

transfer functions as plotted in this �gure. An example

of recovering vocal tract shapes for an /ey/ token from
EMMA is presented in Fig. 4. The Maeda's estimated

articulatory parameters cannot be compared directly with

the EMMA measurements. Instead we compared the vo-
cal tract shapes derived from these two methods. In the

experiments using the model parameters estimated from

TIMIT data and the articulatory-acoustic data measured
with an EMMA from a female speaker, we have found that

the estimated vocal tract shapes are consistent with the

ones derived from the actual EMMA measurements. In
our experiments, we found that the trajectories of the esti-

mated articulatory parameters from MFCC parameters are

as smooth as those obtained using the formant frequencies,
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Figure 3: Recovered vocal tract shapes for /aa/ (TIMIT)
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Figure 4: Recovered vocal tract shapes for /ey/ (EMMA)

even though the MFCC trajectories are not as smooth as

those of formant frequencies.

6. SUMMARY

We present in this paper preliminary results of our work

towards improving the recovery of vocal tract shapes from

the speech signal, using the MFCC parameters. We have

used the EM algorithm, with the E-step accomplished by

the Iterated Extended Kalman �ltering and smoothing, to

estimate the model parameters. The method has been

shown to be successful for vowel tokens in TIMIT data.
The use of the method for all other classes of speech sounds

is currently underway.

7. ACKNOWLEDGMENTS

We would like to thank A. Galvan, J. Ma, and G. Ramsay

for implementation of Maeda's articulatory model, imple-

mentation of the VQ algorithm, and for discussions. This

work is supported in part by NSERC, Canada, the Ontario

Government, and by ICR of Univ. of Waterloo.

8. REFERENCES

1. B. S. Atal, J. J. Chang, M. V. Mathews, and J. W.

Tukey. Inversion of Articulatory-to-Acoustic Trans-
formation in the Vocal Tract by a Computer-Sorting

Technique. JASA, 63(5):1535{1555, 1978.

2. V. Digalakis, J.R. Rohlicek, and M. Ostendorf. ML

Estimation of a Stochastic Linear System with the EM

Algorithm and Its Application to Speech Recognition.
IEEE Trans. SAP, 1(4):431{442, 1993.

3. S. Dusan and L. Deng. Estimation of Articulatory

Parameters from Speech Acoustics by Kalman Filter-

ing. In Proc. of CITO Researcher Retreat-Hamilton

Canada, 1998.

4. J. Hogden, A. Lofqvist, V. Gracco, I. Zlokarnik, P. Ru-

bin, and E. Saltzman. Accurate Recovery of Articula-

tor Positions from Acoustics - New Conclusions Based
on Human Data. JASA, 100(3):1819{1834, 1996.

5. P. Mermelstein and M. R. Scroeder. Determination of

Smoothed Cross-Sectional Area Functions of the Vo-

cal Tract from Formant Frequencies. In D.E. Com-
mins, editor, Proceedings of the Fifth International

Congress on Acoustics, volume 1a., 1965.

6. G. Papcun, J. Hochberg, T. Thomas, F. Laroche,

J. Zacks, and S. Levy. Inferring Articulation and

Recognizing Gestures from Acoustics with a Neural
Network Trained on X-ray Microbeam Data. JASA,

92(2):688{700, 1992.

7. G. Ramsay and L. Deng. Maximum-Likelihood Esti-

mation for Articulatory Speech Recognition Using a
Stochastic Target Model. In Proc. EUROSPEECH'95,

pages 1401{1404, 1995.

8. H. Richards, J. Mason, M. Hunt, and J. Bridle. Deriv-

ing Articulatory Representations of Speech. In Proc.

EUROSPEECH'95, pages 761{764, 1995.

9. J. Schroeter, J.N. Larar, and M.M. Sondhi. Speech

Parameter Estimation Using a Vocal Tract /Cord

Model. In ICASSP,pages 308{311, 1987.

10. J. Schroeter and M.M. Sondhi. Dynamic Program-

ming Search of Articulatory Codebooks. In ICASSP,
pages 588{591, 1989.

11. K. Shirai and M. Honda. Estimation of Articulatory

Motion. In Dynamic Aspects of Speech Production,

pages 279{302. Tokyo University Press, 1976.

12. M.M. Sondhi and B. Gopinath. Determination of
the Vocal-Tract Shape from Impulse Response at the

Lips. JASA, 49(6):1867{1873, 1971.

13. V. Sorokin. Determination of Vocal Tract Shape for

Vowels. Speech Communication, 11(1):71{85, 1992.

14. H. Wakita. Direct Estimation of the Vocal Tract
Shape by Inverse Filtering of Acoustic Speech Wave-

forms. IEEE Trans. Audio Electroacoust., AU-21:417{

427, 1973.

15. R. Wilhelms, P. Meyer, and H. W. Strube. Estima-

tion of Articulatory Trajectory by Kalman Filter. In
I.T. Young et al., editor, Signal Processing III: Theo-

ries and Applications, pages 477{480, 1986.


