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ABSTRACT state “B”. In general, final models for “A” and “B” will
then be different. Similar approach has been used in ana-

Parameter tying is often used in large vocabulary cotyzing the nonhomogeneity of images [9].
tinuous speech recognition (LVCSR) systems to balance
the model resolution and generalizability. However, one
consequence of tying is that the differences among ti€d NonN- Reuprocal Data Sharmg
constructs are ignored. Parameter tying can be alterna-
tively viewed as reciprocal data sharing in that a tiedo elaborate the above idea, let's start from the Baum-
construct uses data associated with all others in its tiedfelch [1] reestimation of HMM parameters. Without loss
class. To capture the fine difference among tied HMMf generality, assume that HMM stat8sare clustered into
constructs, we propose to use nonreciprocal data sharifigjoint classes. = {C1,Cs,--- ,Cx}. HMM states be-
(NRDS) when estimating HMM parameters. In particionging to a class share a single set of parameters. The
ular, when estimating Gaussian parameters for a HMMM [2] auxiliary function for a state-tied system, after ig-
state, contributions from other acoustically similar HMMnoring contributions of HMM transition probabilities, is
states will be weighted, thus allowing different statistics
to govern different states. Data sharing weights are op-
timized using cross-validation. It can be shown that the @, (0|¢") Z > > ye(s)log Poy]s; 0c,) (1)
objective function for cross-validation is a sum of rational i=1s€C; t
functions and can be efficiently optimized by the growth-
transform [5, 7]. Our results on Switchboard [4] show thathereO = {o;}{_, is the training speech, ang(u) =
NRDS reduces the word error rate (WER) significantly’(S: = u|O) is the occupancy count for stateat time

compared with a state-of-art baseline system using HMK4 6’ andé are the totality of model parameters before and
state-tying. after an iteration respectively. When necessary, we will

used; or ¢, to denote the parameters specific to state
classC;. Sous = uc, and¥; = ¢, forall s € C; in the

1 Basic ldea paradigm of state-tying. If a single Gaussian is assumed as
the output distribution, Baum-Welch reestimation for class

One way to think of parameter-tying is that data associat@@eans and variances are
with tied constructs is shared reciprocally. For instance,

T
after two triphone states "A’ and "B” are tied, all dataof =~ _ 2 uec; D=1 Vt(u)or @)
“A’" contributes to model “B”, and vice versa, thus mak- ' Y uee, E;‘F:l Ve (w)
ing the two states effectively identical. Tying brings about T ,
“reciprocal” data sharing in the sense that at each Baum-y,,  — Yuee, 2= %(“)(Oj{ — He:)(or — pei) ©)
Welch iteration, “A’ uses the totality of data contributed Yuee; 2oi—t Ye(u)

by “B”, and so does “B” use all the contribution from “A’.

While this helps to improve model robustness, it at the Notice that the data sharing is indeed reciprocal in the
same time ignores the distinction between “A’ and “B”.above formulas: for any statesandv in C;, u uses the to-
So “non-reciprocal” sharing might be a better choice. Itality of data contributed by, and vice versa. Therefore,
particular, a data sharing factor w(B,A) can be introduceithe distinction between individual states vanishes. How-
to weight the contribution from state “B” when estimatingever, this can be improved without sacrificing robustness.
the Gaussian parameters of state “A’, and an independentetC : S — K be the map from HMM states to classes,
factor w(A,B) to weight the contribution from state “A’ to and denote the HMM class for stateby C'(s). Observe



that (1) is equivalent to carried out to get reliable estimates by smoothing MLE
{is, S }. Since NRDS is not MLE, the likelihood of train-
Qr,(010) =Y > > vl(u)logP(o]s;6,) (4) ing data does not necessarily increase after an iteration.
s weC(s) t However, under some conditions, upper and lower bounds
and 0, =0',, if C(s)=C(s") (5) can be established for NRDS estimates. For details, read-
ers are referred to [8].
in that maximizing (4) under the condition (5) yields the In the above discussions, a single Gaussian is assumed
same result as maximizing (1). However, the change 9 be the state output distribution. Extension to HMMs
expression provides us with an alternative view of paranwith a mixture of Gaussians as the state output distribution
eter tying: tying a set of parameters is equivalent to firss straightforward if data-sharing is to be carried out at the
relaxing the constraints on parameters, and then estimatixture component level. However, doing so will result
ing HMM parameters for aimdividual HMM state s by  in a large number of sharing weights. As will be shown
using contributions from all HMM states ifi(s). Notice shortly, data sharing weights will be estimated from train-
that if §, = #’, for anys, s’ such thaC'(s) = C(s'), then ing data as well. Too many weights will make it difficult
it remains true thad, = 4, after an iteration. So parame-to get reliable weight estimates. Therefore, we insist that
ter tying is equivalent tolata sharingunder the condition data sharing be carried out at the HMM state level. We first
(5). weigh occupancy count of stateat timet by w(u, s), and
Now we can define a different objective function bythen distribute the weighted counts to the stabased on
weighting contributions of other states: how likely a mixture component generates a speech frame.
That is,
~(6]6") Z Z Zw (u, s)ve(u)log P(ot|s; 0s) (6)
(ot]s.m)

s.mIV
s u€B(s) t nt(uys‘m) = fyt(u) Cs.

S M e.iN (0g)s.0)
whereB(s) is a set of HMM states “similar” te that make _
contributions to estimating,. Maximizing (6) results in Fi(sm) = > wlu,s)p(u,sm) (1)
the NRDS update formulae (7) and (8): u€B(s)

5 ZT w(t, )7 (w)o wheres.m stands for thent® mixture component of state
fs = ) » 51708 (7) s, M, is the number of mixture components of statand
D ou 2= w(u, 8)ye(u) n:(u, s.m) is the occupancy count that stateontributes
§ > Zthl w(u, s)ve(w) (o — fis)(0r — fis)' 8 to.the mth component of state at .time t. Com IS tr_le
s = S ST w(w, sy (w) (8)  mixture weight ofs.m, andN (-|s.m) is them" Gaussian
u t=l1 )7 distribution of states. With this notation, the NRDS mean

NRDS estimates$jis, s} can be regarded as “smooth-or them!* component of state can be written as
ing” MLE of an unconstrained (i.e, untied) HMM system.
. ( ) ft EUEB(S) UJ(U,, S) Zt Nt (u; S-m)Ot

(13)

Let /i, ands, be the maximum likelihood estimate (MLE) fos.m . (15)
of Gaussian mean and covariance for statghere > uen(s) W 8) 3oy me(u, s.m)
N 21 t(8)o Reestimation formulas for Gaussian covariances can be es-
s = 500 ) tablished similarly [8].
g 2ae(s)(or — fis)(or — fis)" (10)
> ve(s) 3 Optimizing Data Sharing Weights

Then NRDS estimates (7) and (8) can be expressed agifice sharing weights can be regarded as smoothing the
function of /i, ands,. MLE estimate, directly optimizing the likelihood of train-
ing data will yield trivial W, that is, zero weights for cross

W(U, 8)Ya f . :
s = M (11) states. Therefore, it is necessary to optiniieover an
u e independent set of data. To this end, cross-validation or
s — 2aWw8)rEut i) i (12) deleted-interpolation [6] will be adopted to find the opti-
s w(u, )Yy Hsllis mal V. The procedure can be outlined as follows.
u

Let the training dataD be partitioned disjointly into
wherey, = Yor | 7i(u). oW, 0@ ... 0® andletO® =0 —0W forp =
The interpretation of (11) and (12) is that and®, 1,2,---, P. We will start with an initial modelM, and
are reestimated for states with positive occupancy countget an estimate of HMM parametetg(?) = {ﬂgﬁ ), Sgﬁ)}
Then for states with insufficient data, (11) and (12) areut of OP) using non-reciprocal data sharing. Hence



M(®) is a function of data sharing weight&. Then we Let
will evaluate@Q (0O ; M), the EM auxiliary functioh

on dataO®) using the modeM @), The “optimal” W *

will be the one that maximizex.,_, Q(O®; MP)), or

~ (p) _ Et f}/t(p) (S.m)OEp) 23
Hs.m - (p) ( )
Zt Y (s.m)

be the MLE mean of thex!* component of state. Plug

P
x _ _ (p). Aq(P)
W* = argmax Q(W) = arg mV%XEQ QIO M) (22) into (18), and discard terms independentigf we
p:

obtain
To facilitate the derivation of the above objective row
function, the following notation or conventions will be _ 1 N wh A, m(s)ws 24)
adopted. LetV, = |B(s)| be the cardinality of the can- Qs(ws) = 2 Z Z w! Dy (s)ws’ (
didate setB(s) for states, and when it is necessary to p=tm=t
enumerate HMM states iB(s), we will write B(s) as where
Bls) = Asps2oson} @O 4y () =9 (5.) (207, TN ST G, —
Weights{w(s;, s)} will be written as a vectotw, when G $-1 (P (25)
necessary. In addition, & and a~ on top of a symbol S s
denote MLE and NRDS estimates, respectively. A super-  Dp.m(5) =99\ (26)

script p indicates that a quantity is obtained from or de-

pends on data partitic@® while a superscrips means a The objective function (24) is a sum of rational func-

tions, which can be maximized efficiently by the growth

ity i i i@ =0 — 0P
2:?2“%:2 2:5%0(;%;?3 V\ll]ltt?]e timeOsubgcri[')taig (tjf;ce) daef: transform [5, 7]. Details of the optimization algorithm can
P g ' bp be found in a companion paper in SST-98 [7].

in occupancy counts, it means it has been summed over
the time index, i.ey?(s.m) = >, 7/ (s.m).

>, Q(0™; MP) can be written as a sum of func-4 Experimental Results
tions each of which depends on weights related to only

one state: We implemented the proposed non-reciprocal data shar-
ZQ(O(”);M@)) _ ZQs(ws) (17) in.g and testepl it on the Switchboard' (_SWBD). [4] task.
- . Since NRDS is developed by generalizing the idea of ty-

) ing HMM states, NRDS results are compared with those
whereQ(ws) is achieved by a state-tied baseline system. The baseline sys-

Qs (wy) = Z Z'Vt(p)(s'm) logN(in) s.am).  (18) ter_TI]hVéas bu|I\tA|/nSt9h7e LVCSR workshopWS97 [3].

=1 t

? baseline  system -
The Gaussian parametersi{(o\” |s.m) are obtained us- has about seven ||
ing NRDS on dataD?), and are therefore functions ofthousands equiv- =

data sharing weights,;. When optimizingu,, we willas- alence classes
sume that Gaussian covariances are known. But they wif HMM states.
be updated once the optimal weiglts are available. The NRDS esti-
Define mate is obtained 40
(p) (p) by splitting fur- e e
) = 2o (v 5:m)o, (19) ther (using lower
h e (u, s.m) thresholds)  the
GP) =[P (s, s.m)vP, . -o- baseline clustering Figure 1: Top: objective function

tree to about 14 vys. iterations; Bottom: data-sharing
thousands classes.weights vs. iterations
g =[P (s1,s.m),--- ,nP(sn.,s.m)]', (21) HMM state classes
_ _ at Leaf nodes will be the “atoms” for which data sharing
Note thatGY’), is ann x N, matrix while gi), is an s carried out. At the end of splitting3(s) is determined
N,-dimensional vector. Therefore, NRDS mean obtainegk follows. For each leaf node all other leaf nodes are

0P (sn,,sm)vf) ] (20)

Ng,8-m

from dataO?) is ordered by the divergence between underlying Gaussian
) G'%) w, distributions. The closest few nodes are selected as

Asm = —Gyr (22)  B(s) so that the total occupancy is greater than a thresh-

gs.mWs old. Gaussian parameters of new equivalence classes

LEM counts are obatined from the initial modeetq are set initially to that of their baseline parent nodes.
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NRDS can be viewed as smoothing the MLE of HMM
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